Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Curr Opin Gastroenterol ; 38(2): 173-178, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35034081

RESUMO

PURPOSE OF REVIEW: The gut microbial co-metabolism of bile-derived compounds (e.g. bile acids and bile pigments) affects colorectal cancer (CRC) risk. Here, we review recent findings with focus on selected novel aspects of bile-associated effects with interesting but unclear implications on CRC risk. RECENT FINDINGS: Numerous studies demonstrated novel biotransformation of bile acids by gut bacteria (e.g. microbial conjugation of bile acids), resulting in diverse bile acid compounds that show complex interactions with host receptors (e.g. FXR, TGR5). In addition, YAP-associated signalling in intestinal epithelial cells is modulated via bile acid receptor TGR5 and contributes to colonic tumorigenesis. Finally, studies indicate that serum levels of the bile pigment bilirubin are inversely associated with CRC risk or intestinal inflammation and that bilirubin affects gut microbiota composition. SUMMARY: Bile acids and bile pigments have multiple effects on intestinal microbe-host interactions, which may collectively modulate long-term CRC risk of the host.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Ácidos e Sais Biliares , Pigmentos Biliares , Bilirrubina , Neoplasias Colorretais/etiologia , Humanos
5.
Oncotarget ; 11(14): 1257-1272, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32292575

RESUMO

SYK has been reported to possess both tumour promotor and repressor activities and deletion has been linked to a pro-proliferative / pro-invasive phenotype in breast tumours. It is unclear whether this is a consequence of protein deletion or loss of kinase activity. The SYK inhibitor, BI 1002494, caused no increase in proliferation in breast cancer cells or primary mammary epithelial cells in 2D or 3D cultures, nor changes in proliferation (CD1/2, CDK4, PCNA, Ki67) or invadopodia markers (MMP14, PARP, phospho-vimentin Ser56). BI 1002494 did not alter SYK protein expression. There was no change in phenotype observed in 3D cultures after addition of BI 1002494. Thirteen weeks of treatment with BI 1002494 resulted in no ductal branching or cellular proliferation in the mammary glands of mice. An in silico genetic analysis in breast tumour samples revealed no evidence that SYK has a typical tumour suppressor gene profile such as focal deletion, inactivating mutations or lower expression levels. Furthermore, SYK mutations were not associated with reduction in survival and disease-free period in breast cancer patients. In conclusion, small molecule inhibition of the kinase function of SYK does not contribute to a typical tumour suppressor profile.

6.
Metallomics ; 11(6): 1044-1048, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-30942231

RESUMO

The ruthenium complex sodium trans-[tetrachloridobis(1H-indazole)ruthenate(iii)] (KP1339/IT-139) showed preclinical activity in a variety of in vivo tumor models including a highly predictive colon cancer model. The compound has entered clinical trials, where patients experienced disease stabilization accompanied by mild side effects. KP1339, a GRP78 inhibitor, disrupts endoplasmic reticulum (ER) homeostasis leading to cell death. The PERK/eIF2α-branch of the ER plays an essential role in the cascade of events triggering immunogenic cell death (ICD). ICD makes dying cancer cells 'visible' to the immune system, initiating a prolonged immune response against the tumor. As some metal-based chemotherapeutics such as oxaliplatin are able to induce ICD, we investigate whether KP1339 could also trigger induction of the ICD signature. For this, we employ a three-dimensional colon cancer spheroid model and show for the first time that the treatment with KP1339, a ruthenium-based complex, triggers an ICD signature hallmarked by phosphorylation of PERK and eIF2α, exposure of calreticulin on the cell membrane, release of high mobility group box 1 and secretion of ATP.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Morte Celular Imunogênica/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Rutênio/farmacologia , Neoplasias Colorretais/patologia , Chaperona BiP do Retículo Endoplasmático , Células HCT116 , Humanos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia
7.
Methods Mol Biol ; 1953: 151-162, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30912021

RESUMO

The cross talk between tumor cells and other cells present in the tumor microenvironment such as stromal and immune cells highly influences the behavior and progression of disease. Understanding the underlying mechanisms of interaction is a prerequisite to develop new treatment strategies and to prevent or at least reduce therapy failure in the future. Specific reactivation of the patient's immune system is one of the major goals today. However, standard two-dimensional (2D) cell culture techniques lack the necessary complexity to address related questions. Novel three-dimensional (3D) in vitro models-embedded in a matrix or encapsulated in alginate-recapitulate the in vivo situation much better. Cross talk between different cell types can be studied starting from co-cultures. As cancer immune modulation is becoming a major research topic, 3D in vitro models represent an important tool to address immune regulatory/modulatory questions for T, NK, and other cells of the immune system. The 3D systems consisting of tumor cells, fibroblasts, and immune cells (3D-3) already proved as a reliable tool for us. For instance, we made use of those models to study the molecular mechanisms of the cross talk of non-small cell lung cancer (NSCLC) and fibroblasts, to unveil macrophage plasticity in the tumor microenvironment and to mirror drug responses in vivo. Generation of those 3D models and how to use them to study immune cell infiltration and activation will be described in the present book chapter.


Assuntos
Técnicas de Cocultura/métodos , Descoberta de Drogas/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Antineoplásicos/farmacologia , Reatores Biológicos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Células Imobilizadas/efeitos dos fármacos , Células Imobilizadas/imunologia , Células Imobilizadas/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/imunologia , Fibroblastos/patologia , Humanos , Imunidade Celular/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/imunologia , Esferoides Celulares/patologia , Células Tumorais Cultivadas , Microambiente Tumoral/efeitos dos fármacos
8.
Methods Mol Biol ; 1888: 1-20, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30519938

RESUMO

PREDECT, a European IMI consortium, has assumed the task to generate robust 2D and 3D culture platforms. Protocols established for 2D and 3D monoculture and stromal coculture models of increasing complexity (spheroid, stirred-tank bioreactor, Matrigel- and collagen-embedded cultures) have been established between six laboratories within academia, biotech, and pharma. These models were tested using three tumor cell lines (MCF7, LNCaP, and NCI-H1437), covering three pathologies (breast, prostate, and lung), but should be readily transferable to other model systems. Fluorescent protein tagged cell lines were used for all platforms, allowing for online measurement of growth curves and drug responses to treatments. All methods, from culture setup to phenotypic characterization and gene expression profiling are described in this chapter.The adaptable methodologies and detailed protocols described here should help to include these models more readily to the drug discovery pipeline.


Assuntos
Técnicas de Cultura de Células , Reatores Biológicos , Linhagem Celular Tumoral , Citometria de Fluxo , Imunofluorescência , Expressão Gênica , Ordem dos Genes , Genes Reporter , Vetores Genéticos/genética , Humanos , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Software , Esferoides Celulares , Transdução Genética , Células Tumorais Cultivadas
9.
Sci Data ; 4: 170170, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29160867

RESUMO

Two-dimensional (2D) culture of cancer cells in vitro does not recapitulate the three-dimensional (3D) architecture, heterogeneity and complexity of human tumors. More representative models are required that better reflect key aspects of tumor biology. These are essential studies of cancer biology and immunology as well as for target validation and drug discovery. The Innovative Medicines Initiative (IMI) consortium PREDECT (www.predect.eu) characterized in vitro models of three solid tumor types with the goal to capture elements of tumor complexity and heterogeneity. 2D culture and 3D mono- and stromal co-cultures of increasing complexity, and precision-cut tumor slice models were established. Robust protocols for the generation of these platforms are described. Tissue microarrays were prepared from all the models, permitting immunohistochemical analysis of individual cells, capturing heterogeneity. 3D cultures were also characterized using image analysis. Detailed step-by-step protocols, exemplary datasets from the 2D, 3D, and slice models, and refined analytical methods were established and are presented.


Assuntos
Modelos Biológicos , Neoplasias , Técnicas de Cultura de Células , Humanos , Imageamento Tridimensional
10.
Sci Rep ; 6: 28951, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27364600

RESUMO

Two-dimensional (2D) cell cultures growing on plastic do not recapitulate the three dimensional (3D) architecture and complexity of human tumors. More representative models are required for drug discovery and validation. Here, 2D culture and 3D mono- and stromal co-culture models of increasing complexity have been established and cross-comparisons made using three standard cell carcinoma lines: MCF7, LNCaP, NCI-H1437. Fluorescence-based growth curves, 3D image analysis, immunohistochemistry and treatment responses showed that end points differed according to cell type, stromal co-culture and culture format. The adaptable methodologies described here should guide the choice of appropriate simple and complex in vitro models.


Assuntos
Técnicas de Cocultura/métodos , Esferoides Celulares/citologia , Linhagem Celular Tumoral , Humanos , Imageamento Tridimensional , Células MCF-7 , Células Estromais/citologia
11.
Microb Cell Fact ; 14: 199, 2015 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-26655167

RESUMO

BACKGROUND: Several studies in animal models demonstrated that obligate and facultative anaerobic bacteria of the genera Bifidobacterium, Salmonella, or Clostridium specifically colonize solid tumors. Consequently, these and other bacteria are discussed as live vectors to deliver therapeutic genes to inhibit tumor growth. Therapeutic approaches for cancer treatment using anaerobic bacteria have been investigated in different mouse models. In the present study, solid three-dimensional (3D) multicellular tumor spheroids (MCTS) of the colorectal adenocarcinoma cell line HT-29 were generated and tested for their potential to study prodrug-converting enzyme therapies using bacterial vectors in vitro. RESULTS: HT-29 MCTS resembled solid tumors displaying all relevant features with an outer zone of proliferating cells and hypoxic and apoptotic regions in the core. Upon incubation with HT-29 MCTS, Bifidobacterium bifidum S17 and Salmonella typhimurium YB1 selectively localized, survived and replicated in hypoxic areas inside MCTS. Furthermore, spores of the obligate anaerobe Clostridium sporogenes germinated in these hypoxic areas. To further evaluate the potential of MCTS to investigate therapeutic approaches using bacteria as gene delivery vectors, recombinant bifidobacteria expressing prodrug-converting enzymes were used. Expression of a secreted cytosine deaminase in combination with 5-fluorocytosine had no effect on growth of MCTS due to an intrinsic resistance of HT-29 cells to 5-fluorouracil, i.e. the converted drug. However, a combination of the prodrug CB1954 and a strain expressing a secreted chromate reductase effectively inhibited MCTS growth. CONCLUSIONS: Collectively, the presented results indicate that MCTS are a suitable and reliable model to investigate live bacteria as gene delivery vectors for cancer therapy in vitro.


Assuntos
Terapia Genética/métodos , Vetores Genéticos/genética , Técnicas In Vitro/métodos , Esferoides Celulares/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Camundongos
12.
PLoS One ; 10(6): e0128802, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26086721

RESUMO

Health-promoting effects have been attributed to a number of Bifidobacterium sp. strains. These effects as well as the ability to colonise the host depend on secreted proteins. Moreover, rational design of protein secretion systems bears the potential for the generation of novel probiotic bifidobacteria with improved health-promoting or therapeutic properties. To date, there is only very limited data on secretion signals of bifidobacteria available. Using in silico analysis, we demonstrate that all bifidobacteria encode the major components of Sec-dependent secretion machineries but only B. longum strains harbour Tat protein translocation systems. A reporter plasmid for secretion signals in bifidobacteria was established by fusing the coding sequence of the signal peptide of a sialidase of Bifidobacterium bifidum S17 to the phytase gene appA of E. coli. The recombinant strain showed increased phytase activity in spent culture supernatants and reduced phytase levels in crude extracts compared to the control indicating efficient phytase secretion. The reporter plasmid was used to screen seven predicted signal peptides in B. bifidum S17 and B. longum E18. The tested signal peptides differed substantially in their efficacy to mediate protein secretion in different host strains. An efficient signal peptide was used for expression and secretion of a therapeutically relevant protein in B. bifidum S17. Expression of a secreted cytosine deaminase led to a 100-fold reduced sensitivity of B. bifidum S17 to 5-fluorocytosine compared to the non-secreted cytosine deaminase suggesting efficient conversion of 5-fluorocytosine to the cytotoxic cancer drug 5-fluorouracil by cytosine deaminase occurred outside the bacterial cell. Selection of appropriate signal peptides for defined protein secretion might improve therapeutic efficacy as well as probiotic properties of bifidobacteria.


Assuntos
6-Fitase/metabolismo , Proteínas de Bactérias/metabolismo , Bifidobacterium/fisiologia , Genes Reporter/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Translocação Bacteriana/fisiologia , Bifidobacterium/efeitos dos fármacos , Bifidobacterium/genética , Clonagem Molecular , Simulação por Computador , Flucitosina/farmacologia , Produtos do Gene tat/fisiologia , Genes Reporter/genética , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...