Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Clin Med ; 13(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38892790

RESUMO

Background/Objectives: The intranasal delivery of various neurotropic substances is considered a new attractive therapeutic approach for treating neuropathologies associated with neuroinflammation and altered regeneration. Specific language impairment (SLI) that arises as a result of damage to the cortical speech zones during the developmental period is one of the most common problems in preschool children, and it is characterized by persistent difficulties in the acquisition, understanding, and use of language. This study's objective is to evaluate the efficacy and safety of intranasal immunotherapy using the M2 macrophage secretome as a rich source of immunoregulatory and neurotrophic factors for the treatment of severe language impairment in children. Methods: Seventy-one children (54 boys and 17 girls, aged 3 to 13 years) were recruited to participate in a clinical trial (NCT04689282) in two medical centers. The children were examined before, 1 month after, and 6 months after the start of therapy. In the vast majority of children (55/71), language impairment was associated with autistic-like symptoms and attention deficit hyperactivity disorder (ADHD). Results: Daily intranasal inhalations of M2 macrophage-conditioned medium (for 30 days) were well tolerated and led to a decrease in the severity of language impairments, autistic-like behavior, and ADHD symptoms. The clinical effect appeared within a month after the first procedure and persisted or intensified during a 6-month follow-up. Two-thirds of the children showed a clear clinical improvement, while the rest had less pronounced improvement. Conclusions: Thus, the use of the M2 macrophage secretome and its intranasal delivery is safe, well tolerated, and clinically effective in children with severe language impairments.

2.
J Immunol Res ; 2024: 7484490, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455363

RESUMO

Macrophages are the immune cells of high-immunological plasticity, which can exert both pro- and anti-inflammatory activity, as well as repolarize their phenotype to the opposite or neutral one. In this regard, M2 macrophages of the tumor-associated stroma (TAS) are a promising therapeutic target in treating malignant neoplasms. Using FACS assay, we have estimated the CD11b+/Ly-6G+/Ly-6C+ fraction of macrophages from the peritoneum and TAS in intact healthy mice and those with developed Lewis carcinoma, both untreated and treated according to Karanahan technology in combination with group-specific macrophage activator (GcMAF-RF). As well, the pattern of pro- and anti-inflammatory cytokines mRNA expression in different groups of experimental and tumor-bearing animals was assessed. It was found that: (i) exposure of intact mice to GcMAF-RF results in the increased number of CD11b+/Ly-6C+ peritoneal macrophages and, at the same time, the expression pattern of cytokines in peritoneal macrophages switches from that characteristic of the mixed M1/M2 phenotype to that characteristic of the neutral M0 one; (ii) combination of Karanahan technology and GcMAF-RF treatment results in M0/M1 repolarization of TAS macrophages; (iii) in tumor-bearing mice, the response of peritoneal macrophages to such a treatment is associated with the induction of anti-inflammatory reaction, which is opposite to that in TAS macrophages.


Assuntos
Fatores Ativadores de Macrófagos , Macrófagos , Neoplasias , Proteína de Ligação a Vitamina D , Camundongos , Animais , Macrófagos Peritoneais/metabolismo , Citocinas/metabolismo , Neoplasias/patologia , Anti-Inflamatórios/metabolismo
3.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139225

RESUMO

Group-specific component macrophage-activating factor (GcMAF) is the vitamin D3-binding protein (DBP) deglycosylated at Thr420. The protein is believed to exhibit a wide range of therapeutic properties associated with the activation of macrophagal immunity. An original method for GcMAF production, DBP conversion to GcMAF, and the analysis of the activating potency of GcMAF was developed in this study. Data unveiling the molecular causes of macrophage activation were obtained. GcMAF was found to interact with three CLEC10A derivatives having molecular weights of 29 kDa, 63 kDa, and 65 kDa. GcMAF interacts with high-molecular-weight derivatives via Ca2+-dependent receptor engagement. Binding to the 65 kDa or 63 kDa derivative determines the pro- and anti-inflammatory direction of cytokine mRNA expression: 65 kDa-pro-inflammatory (TNF-α, IL-1ß) and 63 kDa-anti-inflammatory (TGF-ß, IL-10). No Ca2+ ions are required for the interaction with the canonical 29 kDa CLEC10A. Both forms, DBP protein and GcMAF, bind to the 29 kDa CLEC10A. This interaction is characterized by the stochastic mRNA synthesis of the analyzed cytokines. Ex vivo experiments have demonstrated that when there is an excess of GcMAF ligand, CLEC10A forms aggregate, and the mRNA synthesis of analyzed cytokines is inhibited. A schematic diagram of the presumable mechanism of interaction between the CLEC10A derivatives and GcMAF is provided. The principles and elements of standardizing the GcMAF preparation are elaborated.


Assuntos
Fatores Ativadores de Macrófagos , Macrófagos , Proteína de Ligação a Vitamina D , Anti-Inflamatórios , Fatores Ativadores de Macrófagos/metabolismo , Macrófagos/metabolismo , RNA Mensageiro , Humanos , Proteína de Ligação a Vitamina D/metabolismo
4.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902311

RESUMO

It is well-established that double-stranded RNA (dsRNA) exhibits noticeable radioprotective and radiotherapeutic effects. The experiments conducted in this study directly demonstrated that dsRNA was delivered into the cell in its native form and that it induced hematopoietic progenitor proliferation. The 68 bp synthetic dsRNA labeled with 6-carboxyfluorescein (FAM) was internalized into mouse hematopoietic progenitors, c-Kit+ (a marker of long-term hematopoietic stem cells) cells and CD34+ (a marker of short-term hematopoietic stem cells and multipotent progenitors) cells. Treating bone marrow cells with dsRNA stimulated the growth of colonies, mainly cells of the granulocyte-macrophage lineage. A total of 0.8% of Krebs-2 cells internalized FAM-dsRNA and were simultaneously CD34+ cells. dsRNA in its native state was delivered into the cell, where it was present without any signs of processing. dsRNA binding to a cell was independent of cell charge. dsRNA internalization was related to the receptor-mediated process that requires energy from ATP. Synthetic dsRNA did not degrade in the bloodstream for at least 2 h. Hematopoietic precursors that had captured dsRNA reinfused into the bloodstream and populated the bone marrow and spleen. This study, for the first time, directly proved that synthetic dsRNA is internalized into a eukaryotic cell via a natural mechanism.


Assuntos
Células-Tronco Hematopoéticas , RNA de Cadeia Dupla , Animais , Camundongos , RNA de Cadeia Dupla/farmacologia , Células-Tronco Hematopoéticas/metabolismo , Medula Óssea/metabolismo , Antígenos CD34/metabolismo , Células da Medula Óssea/metabolismo , Células Cultivadas
5.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555446

RESUMO

An ability of poorly differentiated cells of different genesis, including tumor stem-like cells (TSCs), to internalize extracellular double-stranded DNA (dsDNA) fragments was revealed in our studies. Using the models of Krebs-2 murine ascites carcinoma and EBV-induced human B-cell lymphoma culture, we demonstrated that dsDNA internalization into the cell consists of several mechanistically distinct phases. The primary contact with cell membrane factors is determined by electrostatic interactions. Firm contacts with cell envelope proteins are then formed, followed by internalization into the cell of the complex formed between the factor and the dsDNA probe bound to it. The key binding sites were found to be the heparin-binding domains, which are constituents of various cell surface proteins of TSCs-either the C1q domain, the collagen-binding domain, or domains of positively charged amino acids. These results imply that the interaction between extracellular dsDNA fragments and the cell, as well as their internalization, took place with the involvement of glycocalyx components (proteoglycans/glycoproteins (PGs/GPs) and glycosylphosphatidylinositol-anchored proteins (GPI-APs)) and the system of scavenger receptors (SRs), which are characteristic of TSCs and form functional clusters of cell surface proteins in TSCs. The key provisions of the concept characterizing the principle of organization of the "group-specific" cell surface factors of TSCs of various geneses were formulated. These factors belong to three protein clusters: GPs/PGs, GIP-APs, and SRs. For TSCs of different tumors, these clusters were found to be represented by different members with homotypic functions corresponding to the general function of the cluster to which they belong.


Assuntos
Carcinoma Krebs 2 , Células-Tronco Neoplásicas , Humanos , Animais , Camundongos , Células-Tronco Neoplásicas/metabolismo , DNA/metabolismo , Glicoproteínas/metabolismo , Membrana Celular/metabolismo , Carcinoma Krebs 2/patologia , Proteínas de Membrana/metabolismo
6.
Front Genet ; 13: 954395, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159968

RESUMO

Stem-like tumor cells of ascites carcinoma Krebs-2 and Epstein-Barr virus-induced B-lymphoma were shown to possess the innate capability of binding and internalizing the TAMRA-labeled double-stranded DNA (dsDNA) probe. The process of binding and internalizing is rather complicated and composed of the following successive stages: 1) initiating electrostatic interaction and contact of a negatively charged dsDNA molecule with a positively charged molecule(s) on the surface of a stem-like tumor cell; 2) binding of the dsDNA probe to a tumor stem cell surface protein(s) via the formation of a strong chemical/molecular bond; and 3) the very internalization of dsDNA into the cell. Binding of DNA to cell surface proteins is determined by the presence of heparin/polyanion-binding sites within the protein structure, which can be competitively blocked by heparin and/or dextran sulfate, wherein heparin blocks only the binding, while dextran sulfate abrogates both binding and internalization. The abrogation of internalization by dextran sulfate implies the role of scavenger receptors in this process. Cells were shown to uptake DNA in amounts constituting ∼0.008% of the haploid genome. Inhibitors of caveolae-dependent internalization abrogate the DNA uptake in Krebs-2 cells, and inhibitors of the clathrin/caveolar mechanism block the internalization in B-lymphoma cells. In the present report, it is shown for the first time that in contrast to the majority of committed tumor cells, stem-like tumor cells of Krebs-2 and B-lymphoma carry a general positive charge on their surface.

7.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897653

RESUMO

The main problem related to the studies focusing on group-specific component protein-derived macrophage-activating factor (GcMAF) is the lack of clarity about changes occurring in different types of macrophages and related changes in their properties under the effect of GcMAF in various clinical conditions. We analyzed the antitumor therapeutic properties of GcMAF in a Lewis carcinoma model in two clinical conditions: untreated tumor lesion and tumor resorption after exposure to Karanahan therapy. GcMAF is formed during site-specific deglycosylation of vitamin D3 binding protein (DBP). DBP was obtained from the blood of healthy donors using affinity chromatography on a column with covalently bound actin. GcMAF-related factor (GcMAF-RF) was converted in a mixture with induced lymphocytes through the cellular enzymatic pathway. The obtained GcMAF-RF activates murine peritoneal macrophages (p < 0.05), induces functional properties of dendritic cells (p < 0.05) and promotes in vitro polarization of human M0 macrophages to M1 macrophages (p < 0.01). Treatment of whole blood cells with GcMAF-RF results in active production of both pro- and anti-inflammatory cytokines. It is shown that macrophage activation by GcMAF-RF is inhibited by tumor-secreted factors. In order to identify the specific antitumor effect of GcMAF-RF-activated macrophages, an approach to primary reduction of humoral suppressor activity of the tumor using the Karanahan therapy followed by macrophage activation in the tumor-associated stroma (TAS) was proposed. A prominent additive effect of GcMAF-RF, which enhances the primary immune response activation by the Karanahan therapy, was shown in the model of murine Lewis carcinoma. Inhibition of the suppressive effect of TAS is the main condition required for the manifestation of the antitumor effect of GcMAF-RF. When properly applied in combination with any chemotherapy, significantly reducing the humoral immune response at the advanced tumor site, GcMAF-RF is a promising antitumor therapeutic agent that additively destroys the pro-tumor properties of macrophages of the tumor stroma.


Assuntos
Carcinoma , Fatores Ativadores de Macrófagos , Proteína de Ligação a Vitamina D , Animais , Proteínas Sanguíneas/metabolismo , Carcinoma/tratamento farmacológico , Humanos , Ativação de Macrófagos , Fatores Ativadores de Macrófagos/metabolismo , Camundongos , Proteína de Ligação a Vitamina D/metabolismo
8.
Breast Cancer (Auckl) ; 16: 11782234211059931, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185333

RESUMO

INTRODUCTION: Karanahan, a cancer treatment technology aimed at eradicating tumor-initiating stem cells, has already proven effective in 7 tumor models. Karanahan comprises the following procedures: (1) collecting surgical specimens, (2) determining the duration of the DNA repair process in tumor cells exposed to a cross-linking cytostatic agent, and (3) determining the time point, when cells, including tumor-initiating stem cells, are synchronized in the certain phase of the cell cycle after triple exposure to the cytostatic, becoming vulnerable for the terminal treatment, which is supposed to completely eliminate the rest of survived tumor-initiating stem cells. Determining these basic tumor properties allows to design the schedule for the administration of a cross-linking cytostatic and a complex composite DNA preparation. Being conducted in accordance with the schedule designed, Karanahan results in the large-scale apoptosis of tumor cells with elimination of tumor-initiating stem cells. METHODS: Breast tumor specimens were obtained from patients, and basic tumor properties essential for conducting Karanahan therapy were determined. RESULTS: We report the first use of Karanahan in patients diagnosed with breast cancer. Technical details of handling surgical specimens for determining the essential Karanahan parameters (tumor volume, cell number, cell proliferation status, etc) have been worked out. The terminally ill patient, who was undergoing palliative treatment and whose tumor specimen matched the required criteria, received a complete course of Karanahan. CONCLUSIONS: The results of the treatment conducted indicate that Karanahan technology has a therapeutic potency and can be used as a breast cancer treatment option.

9.
J Biomed Res ; 37(3): 194-212, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37161885

RESUMO

To overcome immune tolerance to cancer, the immune system needs to be exposed to a multi-target action intervention. Here, we investigated the activating effect of CpG oligodeoxynucleotides (ODNs), mesyl phosphoramidate CpG ODNs, anti-OX40 antibodies, and OX40 RNA aptamers on major populations of immunocompetent cells ex vivo. Comparative analysis of the antitumor effects of in situ vaccination with CpG ODNs and anti-OX40 antibodies, as well as several other combinations, such as mesyl phosphoramidate CpG ODNs and OX40 RNA aptamers, was conducted. Antibodies against programmed death 1 (PD1) checkpoint inhibitors or their corresponding PD1 DNA aptamers were also added to vaccination regimens for analytical purposes. Four scenarios were considered: a weakly immunogenic Krebs-2 carcinoma grafted in CBA mice; a moderately immunogenic Lewis carcinoma grafted in C57Black/6 mice; and an immunogenic A20 B cell lymphoma or an Ehrlich carcinoma grafted in BALB/c mice. Adding anti-PD1 antibodies (CpG+αOX40+αPD1) to in situ vaccinations boosts the antitumor effect. When to be used instead of antibodies, aptamers also possess antitumor activity, although this effect was less pronounced. The strongest effect across all the tumors was observed in highly immunogenic A20 B cell lymphoma and Ehrlich carcinoma.

10.
Cancer Biol Med ; 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34259424

RESUMO

OBJECTIVE: Glioma is a highly invasive tumor, frequently disposed in essential areas of the brain, which makes its surgical excision extremely difficult; meanwhile adjuvant therapy remains quite ineffective. METHODS: In the current report, a new therapeutic approach in curing malignant neoplasms has been performed on the U87 human glioblastoma model. This approach, termed "Karanahan", is aimed at the eradication of cancer stem cells (CSCs), which were recently shown to be capable of internalizing fragments of extracellular double-stranded DNA. After being internalized, these fragments interfere in the process of repairing interstrand cross-links caused by exposure to appropriate cytostatics, and such an interference results either in elimination of CSCs or in the loss of their tumorigenic potency. Implementation of the approach requires a scheduled administration of cytostatic and complex composite double-stranded DNA preparation. RESULTS: U87 cells treated in vitro in accordance with the Karanahan approach completely lost their tumorigenicity and produced no grafts upon intracerebral transplantation into immunodeficient mice. In SCID mice with developed subcutaneous grafts, the treatment resulted in reliable slowing down of tumor growth rate (P < 0.05). In the experiment with intracerebral transplantation of U87 cells followed by surgical excision of the developed graft and subsequent therapeutic treatment, the Karanahan approach was shown to reliably slow down the tumor growth rate and increase the median survival of the mice twofold relative to the control. CONCLUSIONS: The effectiveness of the Karanahan approach has been demonstrated both in vitro and in vivo in treating developed subcutaneous grafts as well as orthotopic grafts after surgical excision of the tumor.

11.
Anticancer Res ; 41(7): 3371-3387, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34230133

RESUMO

BACKGROUND/AIM: We compared the therapeutic efficacy of two recently developed experimental anticancer technologies: 1) in situ vaccination based on local immunotherapy with CpG oligonucleotides and anti-OX40 antibodies to activate antitumor immune response and 2) "Karanahan" technology [from the Sanskrit karana ('source') + han ('to kill')] based on the combined injection of cyclophosphamide and double-stranded DNA to eradicate cancer stem cells. MATERIALS AND METHODS: The anticancer approaches were compared on three types of mouse malignant tumors with different grades of immunogenicity: weakly immunogenic carcinoma Krebs-2, moderately immunogenic Lewis carcinoma, and highly immunogenic A20 В-cellular lymphoma. RESULTS: Our results indicated that in situ vaccination was the most effective against the highly immunogenic tumor А20. In addition, "Karanahan" demonstrated high efficiency in all types of tumors, regardless of their immunogenicity or size. CONCLUSION: "Karanahan" therapy showed higher efficacy relative to in situ vaccination with CpG oligonucleotides and anti-OX40 antibodies.


Assuntos
Antineoplásicos/imunologia , Imunoterapia/métodos , Animais , Anticorpos/imunologia , Antígenos de Diferenciação/imunologia , Antígenos de Neoplasias/imunologia , Carcinoma Pulmonar de Lewis/imunologia , Linhagem Celular Tumoral , Ciclofosfamida/imunologia , DNA/imunologia , Feminino , Linfoma/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Células-Tronco Neoplásicas/imunologia , Oligodesoxirribonucleotídeos/imunologia , Receptores OX40/imunologia , Vacinação/métodos
12.
Clin Cosmet Investig Dermatol ; 14: 187-196, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679135

RESUMO

PURPOSE: The purpose of this study was to assess the capability of recombinant angiogenin isolated from Pichia pastoris yeasts to stimulate regenerative processes in the dermis of experimental animals. PATIENTS AND METHODS: Wistar rats were administered with recombinant angiogenin intracutaneously. Morphological examination of the skin and the assessment of the proliferative activity of the epidermal cells were carried out. Additionally, cytokine production by human whole blood cells exposed to angiogenin was analyzed ex vivo. RESULTS: Administration of angiogenin stimulates collagen fiber formation and angiogenesis. This stimulation is tightly associated with an increase in the number of fibroblasts, an increased numerical density of dermal blood vessels and an increased density of collagen fibers; also, it activates the proliferation of basal cells. Angiogenin induces the production of MCP, IL-8, IL-6, IL-1ß, TNF-α, IL-10, TGF-ß, and VEGF by blood cells. CONCLUSION: The results obtained indicate a broad spectrum of actions of recombinant angiogenin during regenerative processes in the basal layer of the dermis.

13.
Transl Cancer Res ; 10(11): 4958-4972, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35116346

RESUMO

OBJECTIVE: We describe experimental and theoretical premises of a powerful cancer therapy based on the combination of three approaches. These include (I) in situ vaccination (intratumoral injections of CpG oligonucleotides and anti-OX40 antibody); (II) chronometric or metronomic low-dose cyclophosphamide (CMLD CP)-based chemotherapy; (III) cancer stem cell-eradicating therapy referred to as Karanahan (from the Sanskrit karana ["source"] + han ["to kill"]). BACKGROUND: In murine models, the first two approaches are particularly potent in targeting immunogenic tumors for destruction. In situ vaccination activates a fully fledged anticancer immune response via an intricate network of ligand-receptor-cytokine interactions. CMLD CP-based chemotherapy primarily targets the suppressive tumor microenvironment and activates tumor-infiltrating effectors. In contrast, Karanahan technology, being aimed at replicative machinery of tumor cells (both stem-like and committed), does not depend on tumor immunogenicity. With this technology, mice engrafted with ascites and/or solid tumors can be successfully cured. There is a significant degree of mechanistic and therapeutic overlap between these three approaches. For instance, the similarities shared between in situ vaccination and Karanahan technology include the therapeutic procedure, the cell target [antigen-presenting cells (APC) and dendritic cells (DC)], and the use of DNA-based preparations (CpG and DNAmix). Features shared between CMLD CP-based chemotherapy and Karanahan technology are the timing and the dose of the cytostatic drug administration, which lead to tumor regression. METHODS: The following keywords were used to search PubMed for the latest research reporting successful eradication of transplantable cancers in animal models that relied on approaches distinct from those used in the Karanahan technology: eradication of malignancy, cure cancer, complete tumor regression, permanently eradicating advanced mouse tumor, metronomic chemotherapy, in situ vaccination, immunotherapy, and others. CONCLUSION: We hypothesize, therefore, that very potent anticancer activity can be achieved once these three therapeutic modalities are combined into a single approach. This multimodal approach is theoretically curative for any type of cancer that depends on the presence of tumor-inducing cancer stem cells, provided that the active therapeutic components are efficiently delivered into the tumor and the specific biological features of a given patient's tumor are properly addressed. We expect this multimodal approach to be primarily applicable to late-stage or terminal cancer patients who have exhausted all treatment options as well as patients with inoperable tumors.

14.
Cell Immunol ; 331: 93-99, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29895390

RESUMO

The engulfment of apoptotic cells by monocytes and unprimed macrophages results in M2 polarization. In the current study, we investigated whether apoptotic cells influence the phenotypic and functional characteristics of GM-CSF-differentiated human macrophages (GM-Mφ). Our results demonstrate that GM-Mφ preincubated with apoptotic neutrophils (GM-MφNeu) show significantly increased expression of CD206 and FasL and decreased capacity to stimulate allogeneic T-cell proliferation thus adopting M2 features. The 27-plex analysis demonstrates the down-regulation of 24 cytokines (including IL-10) in GM-MφNeu cultures. In contrast, apoptotic neutrophils enhance PGE2 synthesis by GM-Mφ, and blocking PGE2 production with indomethacin restores an allostimulatory activity of GM-MφNeu. These data provide evidence that GM-Mφ following exposure to apoptotic cells acquire features of M2 cells. Given the global suppression of cytokine secretion, GM-MφNeu resemble deactivated (M2c) macrophages, and their capacity to inhibit allogeneic T-cell proliferation appears to be mediated by an enhanced synthesis of PGE2 but not IL-10.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Adulto , Apoptose/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Dinoprostona/metabolismo , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Adulto Jovem
15.
BMC Cancer ; 16: 651, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27538465

RESUMO

BACKGROUND: We report on the results of a phase II clinical trial of Panagen (tablet form of fragmented human DNA preparation) in breast cancer patients (placebo group n = 23, Panagen n = 57). Panagen was administered as an adjuvant leukoprotective agent in FAC and AC chemotherapy regimens. Pre-clinical studies clearly indicate that Panagen acts by activating dendritic cells and induces the development of adaptive anticancer immune response. METHODS: We analyzed 5-year disease-free survival of patients recruited into the trial. RESULTS: Five-year disease-free survival in the placebo group was 40 % (n = 15), compared with the Panagen arm - 53 % (n = 51). Among stage III patients, disease-free survival was 25 and 52 % for placebo (n = 8) and Panagen (n = 25) groups, respectively. Disease-free survival of patients with IIIB + C stage was as follows: placebo (n = 6)-17 % vs Panagen (n = 18)-50 %. CONCLUSIONS: Disease-free survival rate (17 %) of patients with IIIB + C stage breast cancer receiving standard of care therapy is within the global range. Patients who additionally received Panagen demonstrate a significantly improved disease-free survival rate of 50 %. This confirms anticancer activity of Panagen. TRIAL REGISTRATION: ClinicalTrials.gov NCT02115984 from 04/07/2014.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Quimioterapia Adjuvante/métodos , Feminino , Humanos , Estadiamento de Neoplasias , Análise de Sobrevida , Resultado do Tratamento
16.
Clin Lymphoma Myeloma Leuk ; 16(10): 563-576, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27431933

RESUMO

BACKGROUND: The most prominent features of cancer stem cells are asymmetric cell division, tumorigenicity, and clonogenicity. Recently one more feature of poorly differentiated cell types of various origin, including cancer stem cells, has been described. Namely, these cells can internalize extracellular DNA natively, without additional transfection procedures. PATIENTS AND METHODS: Using our approach to trace internalization of a TAMRA (carboxy tetramethyl-rhodamine [fluorescent dye])-DNA labeled probe by poorly differentiated cell types, we isolated and characterized the cells from free-floating spheres derived from the bone marrow clonogenic aspirate of a multiple myeloma patient. RESULTS: Nonadherent spheres display a B-cell phenotype (CD73/CD20+/CD45+/CD19dim). Further, free-floating spheres contain 1% to 3% cells with a clonogenic potential, and these cells display a marker of poorly differentiated cell types (TAMRA+). Upon association with a group of ∼ 10 free-floating TAMRA- cells, this peculiar cell type forms a sphere-forming cluster that initiates secondary aggregation of cells into a spheric structure. TAMRA+ and TAMRA- cells secrete distinct sets of cytokines indicative of the paracrine regulation. Grafting experiments of intact whole spheres versus cell suspensions prepared from dispersed spheres indicate that successful engraftment only occurs in the former case. CONCLUSION: Nonadherent 3-D cell colonies (spheres) encompass B cells with CD73/CD20+/CD45+/CD19dim phenotype, as well as double-stranded DNA-internalizing cells. The latter cell type appears to function as a sphere-forming center. Different cells in the spheres communicate with each other by secreting specific sets of cytokines. For successful engraftment and tumor growth in mice, intact spheres containing ∼ 106 cells must be used.


Assuntos
Biomarcadores Tumorais , DNA/metabolismo , Endocitose , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Adulto , Animais , Antígenos CD/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Medula Óssea/patologia , Adesão Celular , Linhagem Celular Tumoral , Citocinas/biossíntese , Modelos Animais de Doenças , Feminino , Humanos , Imunofenotipagem , Masculino , Camundongos , Pessoa de Meia-Idade , Mieloma Múltiplo/tratamento farmacológico , Transplante de Células-Tronco de Sangue Periférico , Esferoides Celulares , Resultado do Tratamento , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Stem Cell Res Ther ; 7(1): 76, 2016 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-27225522

RESUMO

BACKGROUND: Previously, we demonstrated that poorly differentiated cells of various origins, including tumor-initiating stem cells present in the ascites form of mouse cancer cell line Krebs-2, are capable of naturally internalizing both linear double-stranded DNA and circular plasmid DNA. METHODS: The method of co-incubating Krebs-2 cells with extracellular plasmid DNA (pUC19) or TAMRA-5'-dUTP-labeled polymerase chain reaction (PCR) product was used. It was found that internalized plasmid DNA isolated from Krebs-2 can be transformed into competent Escherichia coli cells. Thus, the internalization processes taking place in the Krebs-2 cell subpopulation have been analyzed and compared, as assayed by E. coli colony formation assay (plasmid DNA) and cytofluorescence (TAMRA-DNA). RESULTS: We showed that extracellular DNA both in the form of plasmid DNA and a PCR product is internalized by the same subpopulation of Krebs-2 cells. We found that the saturation threshold for Krebs-2 ascites cells is 0.5 µg DNA/10(6) cells. Supercoiled plasmid DNA, human high-molecular weight DNA, and 500 bp PCR fragments are internalized into the Krebs-2 tumor-initiating stem cells via distinct, non-competing internalization pathways. Under our experimental conditions, each cell may harbor 340-2600 copies of intact plasmid material, or up to 3.097 ± 0.044×10(6) plasmid copies (intact or not), as detected by quantitative PCR. CONCLUSION: The internalization dynamics of extracellular DNA, copy number of the plasmids taken up by the cells, and competition between different types of double-stranded DNA upon internalization into tumor-initiating stem cells of mouse ascites Krebs-2 have been comprehensively analyzed. Investigation of the extracellular DNA internalization into tumor-initiating stem cells is an important part of understanding their properties and possible destruction mechanisms. For example, a TAMRA-labeled DNA probe may serve as an instrument to develop a target for the therapy of cancer, aiming at elimination of tumor stem cells, as well as developing a straightforward test system for the quantification of poorly differentiated cells, including tumor-initiating stem cells, in the bulk tumor sample (biopsy or surgery specimen).


Assuntos
Ascite/metabolismo , DNA/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Ascite/patologia , Transporte Biológico , Linhagem Celular Tumoral , Contagem de Colônia Microbiana , DNA/genética , Variações do Número de Cópias de DNA , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos CBA , Células-Tronco Neoplásicas/patologia , Plasmídeos/química , Plasmídeos/metabolismo , Transformação Genética , Ensaio Tumoral de Célula-Tronco
19.
Cell Transplant ; 25(8): 1461-71, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26671426

RESUMO

Our objective was to evaluate the safety and clinical efficacy of autologous M2 macrophage transplantation in nonacute stroke patients. We also evaluated whether the intrathecal administration of macrophages influences the production of cytokines by peripheral blood cells and whether the levels of cytokines correlate with stroke severity and responsiveness to cell therapy. In this study, 13 patients (12 males and 1 female with a median age of 63 years) diagnosed with ischemic (n = 10) or hemorrhagic (n = 3) stroke were subjected to cell transplantation therapy (study group). On average, 21.9 × 10(6) autologous M2 macrophages were injected intrathecally. Thirteen matched case-control stroke patients who did not receive cell therapy comprised the control group. We did not observe any serious adverse events (i.e., intrahospital mortality, neurological worsening, and seizures) related to the cell injection. One patient in the study group and two patients in the control group died during the 6-month follow-up period due to recurrent stroke. In the study group, the NIHSS score decreased from 11 to 6 (p = 0.007) in 6 months after the therapy, whereas the patients in the control group showed a less pronounced neurological improvement (the NIHSS score decreased from 11 to 8, p = 0.07). The obvious positive response (the improvement of the NIHSS score ≥3) in the study group was observed in 75% versus 18% in the control group (pFET = 0.03). M2 cell introduction did not significantly affect the production of various cytokines. Nevertheless, pretreated levels of IL-8, IL-10, and IL-4 correlated with stroke severity. Moreover, responder patients had lower spontaneous production of IL-10, FGF-ß, PDGF, VEGF, and higher stimulation indexes of IL-1ß, TNF-α, IFN-γ, and IL-6 than nonresponders. These findings suggest that the intrathecal administration of autologous M2 cells in stroke patients is safe and leads to a better neurological recovery, which could be mediated through the immunomodulatory activity of M2 macrophages.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Macrófagos/citologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/terapia , Idoso , Feminino , Humanos , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Leucócitos Mononucleares/metabolismo , Macrófagos/fisiologia , Masculino , Pessoa de Meia-Idade , Transplante Autólogo , Fator de Necrose Tumoral alfa/metabolismo
20.
J Immunol Res ; 2015: 793292, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26339660

RESUMO

The phenotype and functional properties of antigen-presenting cells (APC), that is, circulating monocytes and generated in vitro macrophages and dendritic cells, were investigated in the patients with pulmonary tuberculosis (TB) differing in lymphocyte reactivity to M. tuberculosis antigens (PPD-reactive versus PPD-anergic patients). We revealed the distinct impairments in patient APC functions. For example, the monocyte dysfunctions were displayed by low CD86 and HLA-DR expression, 2-fold increase in CD14(+)CD16(+) expression, the high numbers of IL-10-producing cells, and enhanced IL-10 and IL-6 production upon LPS-stimulation. The macrophages which were in vitro generated from peripheral blood monocytes under GM-CSF were characterized by Th1/Th2-balance shifting (downproduction of IFN-γ coupled with upproduction of IL-10) and by reducing of allostimulatory activity in mixed lymphocyte culture. The dendritic cells (generated in vitro from peripheral blood monocytes upon GM-CSF + IFN-α) were characterized by impaired maturation/activation, a lower level of IFN-γ production in conjunction with an enhanced capacity to produce IL-10 and IL-6, and a profound reduction of allostimulatory activity. The APC dysfunctions were found to be most prominent in PPD-anergic patients. The possible role of APC impairments in reducing the antigen-specific T-cell response to M. tuberculosis was discussed.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/imunologia , Adulto , Células Apresentadoras de Antígenos/metabolismo , Biomarcadores , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Humanos , Imunofenotipagem , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/metabolismo , Mycobacterium tuberculosis/metabolismo , Fenótipo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Tuberculose Pulmonar/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...