Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Infect Dis ; 21(1): 838, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34412582

RESUMO

The extraordinary olfactory sense of canines combined with the possibility to learn by operant conditioning enables dogs for their use in medical detection in a wide range of applications. Research on the ability of medical detection dogs for the identification of individuals with infectious or non-infectious diseases has been promising, but compared to the well-established and-accepted use of sniffer dogs by the police, army and customs for substances such as money, explosives or drugs, the deployment of medical detection dogs is still in its infancy. There are several factors to be considered for standardisation prior to deployment of canine scent detection dogs. Individual odours in disease consist of different volatile organic molecules that differ in magnitude, volatility and concentration. Olfaction can be influenced by various parameters like genetics, environmental conditions, age, hydration, nutrition, microbiome, conditioning, training, management factors, diseases and pharmaceuticals. This review discusses current knowledge on the function and importance of canines' olfaction and evaluates its limitations and the potential role of the dog as a biomedical detector for infectious and non-infectious diseases.


Assuntos
Odorantes , Olfato , Animais , Cães , Aprendizagem
2.
BMC Infect Dis ; 20(1): 536, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703188

RESUMO

BACKGROUND: As the COVID-19 pandemic continues to spread, early, ideally real-time, identification of SARS-CoV-2 infected individuals is pivotal in interrupting infection chains. Volatile organic compounds produced during respiratory infections can cause specific scent imprints, which can be detected by trained dogs with a high rate of precision. METHODS: Eight detection dogs were trained for 1 week to detect saliva or tracheobronchial secretions of SARS-CoV-2 infected patients in a randomised, double-blinded and controlled study. RESULTS: The dogs were able to discriminate between samples of infected (positive) and non-infected (negative) individuals with average diagnostic sensitivity of 82.63% (95% confidence interval [CI]: 82.02-83.24%) and specificity of 96.35% (95% CI: 96.31-96.39%). During the presentation of 1012 randomised samples, the dogs achieved an overall average detection rate of 94% (±3.4%) with 157 correct indications of positive, 792 correct rejections of negative, 33 incorrect indications of negative or incorrect rejections of 30 positive sample presentations. CONCLUSIONS: These preliminary findings indicate that trained detection dogs can identify respiratory secretion samples from hospitalised and clinically diseased SARS-CoV-2 infected individuals by discriminating between samples from SARS-CoV-2 infected patients and negative controls. This data may form the basis for the reliable screening method of SARS-CoV-2 infected people.


Assuntos
Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Programas de Rastreamento/métodos , Odorantes/análise , Pneumonia Viral/diagnóstico , Pneumonia Viral/virologia , Animais , Brônquios/química , Brônquios/virologia , COVID-19 , Estudos de Casos e Controles , Cães , Método Duplo-Cego , Humanos , Pandemias/prevenção & controle , Projetos Piloto , SARS-CoV-2 , Saliva/química , Saliva/virologia , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...