Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(40): 47025-47036, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37756387

RESUMO

Electrolyte cations can have significant effects on the kinetics and selectivity of electrocatalytic reactions. We show an atypical mechanism through which electrolyte cations can impact electrocatalyst performance─direct incorporation of the cation into the oxide electrocatalyst lattice. We investigate the transformations of copper electrodes in alkaline electrochemistry through operando X-ray absorption spectroscopy in KOH and Ba(OH)2 electrolytes. In KOH electrolytes, both the near-edge structure and extended fine-structure agree with previous studies; however, the X-ray absorption spectra vary greatly in Ba(OH)2 electrolytes. Through a combination of electronic structure modeling, near-edge simulation, and postreaction characterization, we propose that Ba2+ cations are directly incorporated into the lattice and form an ordered BaCuO2 phase at potentials more oxidizing than 200 mV vs the normal hydrogen electrode (NHE). BaCuO2 formation is followed by further oxidation to a bulk Cu3+-like BaxCuyOz phase at 900 mV vs NHE. Additionally, during reduction in Ba(OH)2 electrolyte, we find both Cu-O bonds and Cu-Ba scattering persist at potentials as low as -400 mV vs NHE. To our knowledge, this is the first evidence for direct oxidative incorporation of an electrolyte cation into the bulk lattice to form a mixed oxide electrode. The oxidative incorporation of electrolyte cations to form mixed oxides could open a new route for the in situ formation of active and selective oxidation electrocatalysts.

2.
ACS Appl Mater Interfaces ; 15(23): 27878-27892, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37254918

RESUMO

CuO-based catalysts are active for the oxygen evolution reaction (OER), although the active form of copper for the OER is still unknown. We combine operando Raman experiments and density functional theory (DFT) electronic structure calculations to determine the form of Cu(O)xOHy present under OER conditions. Raman spectra show a distinct feature related to the active "Cu3+" species, which is only present under highly oxidizing conditions. DFT is used to produce theoretical Raman standards and match the unique Raman feature of copper under OER potentials. This method identifies a range of Cu3+-containing compounds which match the distinct Raman feature. We then integrate experimental electrochemistry to progressively eliminate possible structures and determine the stoichiometry of the active form as CuOOH, which likely takes the form of a surface-adsorbed hydroxide on a CuO surface. Bader charge analysis, site-projected wavefunctions, and density of states analysis show that electron density is removed from O 2p orbitals upon hydroxide adsorption, suggesting that the electronic structure exhibits d9L Cu2+ behavior rather than the local electronic structure of a formal Cu3+.

3.
RSC Adv ; 11(50): 31208-31218, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35496889

RESUMO

Biomass upgrading - the conversion of biomass waste into value-added products - provides a possible solution to reduce global dependency on nonrenewable resources. This study investigates the possibility of green biomass upgrading for lactic acid production by electrochemically-driven degradation of glucose. Herein we report an electrooxidized copper(ii) electrode which exhibits a turnover frequency of 5.04 s-1 for glucose conversion. Chronoamperometry experiments under varied potentials, alkalinity, and electrode preparation achieved a maximum lactic acid yield of 23.3 ± 1.2% and selectivity of 31.1 ± 1.9% (1.46 V vs. RHE, 1.0 M NaOH) for a room temperature and open-to-atmosphere reaction. Comparison between reaction conditions revealed lactic acid yield depends on alkalinity and applied potential, while pre-oxidation of the copper had a negligible effect on yield. Post-reaction cyclic voltammetry studies indicated no loss in reactivity for copper(ii) electrodes after a 30 hour reaction. Finally, a mechanism dependent on solvated Cu2+ species is proposed as evidenced by similar product distributions in electrocatalytic and thermocatalytic systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...