Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 103: 117678, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489997

RESUMO

Pancreatic Ductal Adenocarcinoma (PDAC), representing over 90 % of pancreatic cancer diagnoses, is an aggressive disease with survivability among the worst of all cancers due to its difficulty in detection and its high metastatic properties. Current therapies for PDAC show limited success at extending life expectancies, primarily due to cancer resistance and lack of patient-specific targeted therapies. This work highlights the design and evaluation of estrone-derived analogs with both heterocyclic side-chain functionality and 11-oxygenated functionality for use in pancreatic cancer. First-round heterocyclic analogs show preliminary promise in AsPC-1 and Panc-1 cell lines, with IC50 values as low as 10.16 ± 0.83 µM. Their success, coupled with design choices from other studies, led to the synthesis of novel 11-hydroxyl and 11-keto estrone analogs that show potent in-vitro toxicity against various pancreatic cancer models. The three most cytotoxic analogs, KA1, KA2, and KA9 demonstrated low micromolar activities in both MTT and CellTiter assays in three pancreatic cancer cell lines: AsPC-1, Panc-1, and BxPC-3, as well as in a co-culture of Panc-1 and pancreatic stellate cells. IC50 values for KA9 (4.17 ± 0.90, 5.28 ± 1.87, and 5.70 ± 0.65 µM respectively) shows consistency in all cell lines tested. KA9 is also able to cause an increase in caspases 3 and 7 activity, key markers for apoptosis, at non-cytotoxic concentrations. Additional work was performed by generating 3D pancreatic cancer spheroids to better modulate the pancreatic tumor microenvironment, and KA9 continued to show the best IC50 values (21.0 and 24.3 µM) in both cell types tested. KA9 was also able to prevent the growth of spheroids whereas the standard chemotherapy, Gemcitabine, could not, suggesting that it may be a potent analog for future development of treatments. Molecular dynamic simulations were also performed to confirm biological findings and uncovered that KA9's preferential binding location is in the active site pocket of key proteins involved in cytotoxicity.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Estrona/farmacologia , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Gencitabina , Pâncreas/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
2.
Molecules ; 28(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37687086

RESUMO

Cancers utilize sugar residues such as sialic acids (Sia) to improve their ability to survive. Sia presents a variety of functional group alterations, including O-acetylation on the C6 hydroxylated tail. Previously, sialylation has been reported to suppress EGFR activation and increase cancer cell sensitivity to Tyrosine Kinase Inhibitors (TKIs). In this study, we report on the effect of deacetylated Sia on the activity of three novel EGFR-targeting Cucurbitacin-inspired estrone analogs (CIEAs), MMA 294, MMA 321, and MMA 320, in lung and colon cancer cells. Acetylation was modulated by the removal of Sialate O-Acetyltransferase, also known as CAS1 Domain-containing protein (CASD1) gene via CRISPR-Cas9 gene editing. Using a variety of cell-based approaches including MTT cell viability assay, flow cytometry, immunofluorescence assay and in-cell ELISA we observed that deacetylated Sia-expressing knockout cells (1.24-6.49 µM) were highly sensitive to all CIEAs compared with the control cells (8.82-20.97 µM). Apoptosis and varied stage cell cycle arrest (G0/G1 and G2/M) were elucidated as mechanistic modes of action of the CIEAs. Further studies implicated overexpression of CIEAs' cognate protein target, phosphorylated EGFR, in the chemosensitivity of the deacetylated Sia-expressing knockout cells. This observation correlated with significantly decreased levels of key downstream proteins (phosphorylated ERK and mTOR) of the EGFR pathway in knockout cells compared with controls when treated with CIEAs. Collectively, our findings indicate that Sia deacetylation renders lung and colon cancer cells susceptible to EGFR therapeutics and provide insights for future therapeutic interventions.


Assuntos
Neoplasias do Colo , Ácido N-Acetilneuramínico , Estrona/farmacologia , Neoplasias do Colo/tratamento farmacológico , Receptores ErbB , Pulmão
3.
Chem Biol Drug Des ; 102(5): 1050-1066, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37500540

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that shows high metastatic capability and poor prognosis. The aggressive behavior of TNBC may involve amplified EGFR expression. Currently, no targeted therapy has been approved for treating TNBC, which urgently needs novel treatment options. In this study, we report that estrone analogs with novel pharmacophores exhibited high potency toward TNBC cells through multiple mechanisms, inhibition of cell proliferation via EGFR receptor, and induction of mitochondrial apoptosis. Molecular docking studies revealed that hit analogs MMA307 and MMA321 were potent against the EGFR receptor (pdb code: 1M17) in silico and were over 10-fold more potent than sorafenib (positive control) when dosed against MDA-MB-468 cells in vitro. MMA307 and MMA321 induced mitochondrial apoptosis as characterized by condensed nuclei with fragmented chromatin, phosphatidylserine flip and modulated expressions of Apaf1, cytochrome c, and caspases 3 and 9. MMA307 and MMA321 inhibited TNBC proliferation through suppression of EGFR and activated EGFR (Y1068) expressions. Similarly, EGFR signaling pathways, RAF/ERK and AKT/mTOR, were inhibited as pARaf, pERK1/2 (characterizes RAF/ERK pathway) and pAKT, pmTOR, p70S6Kα (characterizes AKT/mTOR pathway) were all suppressed. Moreover, MMA307 and MMA321 inhibited TNBC cell growth through downregulation of cyclin D1 expression and arresting TNBC cells in the G1 phase of cell cycle. This study reports for the first time that estrone congeners with novel pharmacophores may be an effective therapy for TNBC. Findings from this research provide a solid foundation for further preclinical and clinical studies in developing estrone derivatives as novel TNBC therapeutics.

4.
Chem Biol Drug Des ; 101(6): 1356-1366, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36775996

RESUMO

Lung cancer is the deadliest human cancer globally, with non-small-cell lung cancer (NSCLC) being the most frequent type. Epidermal growth factor receptor (EGFR), a central regulator of tumor progression is frequently overexpressed in NSCLC and is a key drug target along with its downstream pathways. Here, we describe the biological evaluation of previously synthesized estrone analogs as potent inhibitors of NCI-H226 cells. Two of the analogs, MMA307 and MM320, significantly inhibited the proliferation of NCI-H226 cells with IC50 doses of 2.88 ± 0.21 and 9.68 ± 0.24 µM, respectively, compared with the positive control and chemotherapy, sorafenib, IC50 of 20.62 ± 1.32 µM. Exposing NCI-H226 cells to IC50 concentration of MMA307 and MMA320 resulted in the downregulation of EGFR and phospho-EGFR expression levels, and suppression of activated MAPK-ERK1/2 signaling proteins; phospho-B-Raf, phospho-MEK1/2 , and phospho-ERK1/2 . Furthermore, the downregulation of cyclin D1 and concomitant upregulation of phospho-cyclin D1 and p21waf1/cip1 were observed after the compounds' addition to NCI-H226 cells resulting in G1 phase cell cycle arrest. MMA320 but not MMA307 downregulated the expression levels of Dyrk1B, a checkpoint kinase at the G1 -S phase transition of the cell cycle. Additionally, molecular dynamic simulations were performed and found that MMA307 and MMA320 have higher binding affinities than sorafenib in MEK, BRAF, cyclin D1 , and Dyrk1B (dual-specificity tyrosine phosphorylation-regulated kinase 1B). To conclude, the present study is the first to report on the antiproliferative potential of novel estrone analogs and provide evidence that MMA307 and MMA320 are promising novel lead candidates for the development of antilung cancer drugs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Estrona/farmacologia , Estrona/uso terapêutico , Sorafenibe/uso terapêutico , Neoplasias Pulmonares/patologia , Receptores ErbB/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/uso terapêutico , Ciclina D , Proliferação de Células , Linhagem Celular Tumoral
5.
Drug Dev Res ; 84(2): 200-210, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36484285

RESUMO

Hepatocellular carcinoma (HCC) is the third-leading cause of cancer death in the world, with outlook for most patients having a 5-year survivability of less than 5%. In a previous study from our laboratory, novel estrone inspired analogs act as epidermal growth factor receptor (EGFR) inhibitors in HepG2 cells. This study focuses on the effect of these analogs on an HCC cell line resistance to Erlotinib. Lead compounds MMA132 and MMA102 showed 13 and 20 µM IC50 values, respectively against HepG2-R resistant to Erlotinib. These compounds showed cell cycle arrest of the G2 phase up to 54%, and inhibited cell migration of HepG2-R cells up to 48 h. Western blot analysis revealed that MMA132 reduced total EGFR content after 48 h, while MMA102 inhibited MEK kinase by 84% after 48 h. Western blot analysis also revealed that multidrug resistance protein 2 (MRP2) is overexpressed in HepG2-R, suggesting that ABC transporters play a likely cause in drug resistance. MMA102 showed significant inhibition of both P-glycoprotein (83%) and ABCG2 (53%), two additional ABC transporters. Additionally, MMA102 and MMA132 were used in a combination therapy with MK571(MRP1/2 inhibitor) and produced IC50 values of 18 and 10 µM, respectively, better than either MMA102/132 or MK571 alone. To validate our findings, we conducted molecular dynamic simulations with MMA102 and MMA132 in MEK, P-glycoprotein, MRP1, and MRP2. Results coincided with biological findings in which MMA102 orientation is favored in both MEK and P-glycoprotein pockets, whereas MMA132 likely binds with MRP2, as likely suggested by the combinatorial study.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Cloridrato de Erlotinib/farmacologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Linhagem Celular Tumoral , Subfamília B de Transportador de Cassetes de Ligação de ATP , Receptores ErbB/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
6.
Steroids ; 177: 108950, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34933058

RESUMO

1,2,3-triazoles have continuously shown effectiveness as biologically active systems towards various cancers, and when used in combination with steroid skeletons as a carrier, which can act as a drug delivery system, allows for a creation of a novel set of analogs that may be useful as a pharmacophore leading to a potential treatment option for cancer. A common molecular target for cancer inhibition is that of the Epidermal Growth Factor Receptor/Mitogen Activated Protein Kinase pathways, as inhibition of these proteins is associated with a decrease in cell viability. Estradiol-Triazole analogs were thus designed using a molecular modeling approach. Thirteen of the high scoring analogs were then synthesized and tested in-vitro on an ovarian cancer cell line (A2780) and colorectal cancer cell line (HT-29). The most active compound, Fz25, shows low micromolar activity in both the ovarian (15.29 ± 2.19 µM) and colorectal lines (15.98 ± 0.39 µM). Mechanism of action studies proved that Fz25 moderately arrests cells in the G1 phase of the cell cycle, specifically inhibiting STAT3 in both cell lines. Additionally, Fz57 shows activity in the colorectal line (24.19 ± 1.37 µM). Inhibition studies in both cell lines show inhibition against various proteins in the EGFR pathway, namely EGFR, STAT3, ERK, and mTOR. To further study their effects as therapeutics, Fz25 and Fz57 were studied against drug efflux proteins, which are associated with drug resistance, and were found to inhibit the ABC transporter P-glycoprotein. We can conclude that these estradiol-triazole analogs provide a key for future studies targeting protein inhibition and drug resistance in cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Estradiol/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Triazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Estradiol/química , Feminino , Humanos , Estrutura Molecular , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Triazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...