Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Transpl Int ; 37: 13191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015154

RESUMO

Little is known either about either physical activity patterns, or other lifestyle-related prevention measures in heart transplantation (HTx) recipients. The history of HTx started more than 50 years ago but there are still no guidelines or position papers highlighting the features of prevention and rehabilitation after HTx. The aims of this scientific statement are (i) to explain the importance of prevention and rehabilitation after HTx, and (ii) to promote the factors (modifiable/non-modifiable) that should be addressed after HTx to improve patients' physical capacity, quality of life and survival. All HTx team members have their role to play in the care of these patients and multidisciplinary prevention and rehabilitation programmes designed for transplant recipients. HTx recipients are clearly not healthy disease-free subjects yet they also significantly differ from heart failure patients or those who are supported with mechanical circulatory support. Therefore, prevention and rehabilitation after HTx both need to be specifically tailored to this patient population and be multidisciplinary in nature. Prevention and rehabilitation programmes should be initiated early after HTx and continued during the entire post-transplant journey. This clinical consensus statement focuses on the importance and the characteristics of prevention and rehabilitation designed for HTx recipients.


Assuntos
Insuficiência Cardíaca , Transplante de Coração , Qualidade de Vida , Humanos , Consenso , Europa (Continente) , Exercício Físico , Insuficiência Cardíaca/reabilitação , Insuficiência Cardíaca/cirurgia , Transplante de Coração/efeitos adversos , Sociedades Médicas
2.
Eur J Prev Cardiol ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38894688

RESUMO

Little is known either about either physical activity patterns, or other lifestyle-related prevention measures in heart transplantation (HTx) recipients. The history of HTx started more than 50 years ago but there are still no guidelines or position papers highlighting the features of prevention and rehabilitation after HTx. The aims of this scientific statement are (i) to explain the importance of prevention and rehabilitation after HTx, and (ii) to promote the factors (modifiable/non-modifiable) that should be addressed after HTx to improve patients' physical capacity, quality of life and survival. All HTx team members have their role to play in the care of these patients and multidisciplinary prevention and rehabilitation programmes designed for transplant recipients. HTx recipients are clearly not healthy disease-free subjects yet they also significantly differ from heart failure patients or those who are supported with mechanical circulatory support. Therefore, prevention and rehabilitation after HTx both need to be specifically tailored to this patient population and be multidisciplinary in nature. Prevention and rehabilitation programmes should be initiated early after HTx and continued during the entire post-transplant journey. This clinical consensus.

3.
Surg Endosc ; 38(7): 3875-3886, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38831218

RESUMO

BACKGROUND: One anastomosis gastric bypass (OAGB) has been proposed as an effective alternative to the current standard procedure in Switzerland, Roux-en-Y gastric bypass (RYGB). Prospective data comparing both procedures are scarce. Therefore, we performed a non-inferiority randomized controlled trial assessing the effectiveness and safety of these 2 operative techniques. METHOD: Eighty patients were randomized 1:1. OAGB consisted of a very long gastric pouch with a 200 cm biliopancreatic limb, RYGB of a 150 cm ante-colic alimentary and a 60 cm biliopancreatic limb, respectively. Primary endpoint was the percent excess weight loss (%EWL) at 12 months after surgery. RESULTS: Mean %EWL at 12 months was 87.9% (SD24.4) in the RYGB group and 104.1% (SD24.6) in the OAGB group (p = 0.006). There was no mortality. The rate of marginal ulcers was higher in patients with OAGB compared to those with RYGB (p = 0.011), while the total number of late complications did not statistically differ between the two groups. Except for the remission of GERD, which was higher in the RYGB group compared to OAGB, there was no difference between the groups regarding the remission of comorbidities. OAGB showed improved glucose control compared to the RYGB after 1 year (p = 0.001). Furthermore, glucagon-like peptide-1 increase was significantly higher in OAGB at 6 weeks (p = 0.041) and 1 year after surgery (p = 0.029). Quality of life improved after both surgeries, without differences between the groups. CONCLUSIONS: %EWL 1 year after surgery was higher in OAGB than in RYGB. A better glycemic control with a higher increase in GLP-1 was observed after OAGB compared to RYGB. TRIAL REGISTRATION: This trial is registered on ClinicalTrials.gov under the identifier NCT02601092.


Assuntos
Derivação Gástrica , Laparoscopia , Humanos , Derivação Gástrica/métodos , Feminino , Masculino , Laparoscopia/métodos , Estudos Prospectivos , Adulto , Pessoa de Meia-Idade , Redução de Peso , Obesidade Mórbida/cirurgia , Resultado do Tratamento , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia
4.
Eur J Heart Fail ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38894693

RESUMO

Little is known either about either physical activity patterns, or other lifestyle-related prevention measures in heart transplantation (HTx) recipients. The history of HTx started more than 50 years ago but there are still no guidelines or position papers highlighting the features of prevention and rehabilitation after HTx. The aims of this scientific statement are (i) to explain the importance of prevention and rehabilitation after HTx, and (ii) to promote the factors (modifiable/non-modifiable) that should be addressed after HTx to improve patients' physical capacity, quality of life and survival. All HTx team members have their role to play in the care of these patients and multidisciplinary prevention and rehabilitation programmes designed for transplant recipients. HTx recipients are clearly not healthy disease-free subjects yet they also significantly differ from heart failure patients or those who are supported with mechanical circulatory support. Therefore, prevention and rehabilitation after HTx both need to be specifically tailored to this patient population and be multidisciplinary in nature. Prevention and rehabilitation programmes should be initiated early after HTx and continued during the entire post-transplant journey. This clinical consensus statement focuses on the importance and the characteristics of prevention and rehabilitation designed for HTx recipients.

5.
Signal Transduct Target Ther ; 9(1): 94, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644381

RESUMO

Much effort has been made to uncover the cellular heterogeneities of human hearts by single-nucleus RNA sequencing. However, the cardiac transcriptional regulation networks have not been systematically described because of the limitations in detecting transcription factors. In this study, we optimized a pipeline for isolating nuclei and conducting single-nucleus RNA sequencing targeted to detect a higher number of cell signal genes and an optimal number of transcription factors. With this unbiased protocol, we characterized the cellular composition of healthy human hearts and investigated the transcriptional regulation networks involved in determining the cellular identities and functions of the main cardiac cell subtypes. Particularly in fibroblasts, a novel regulator, PKNOX2, was identified as being associated with physiological fibroblast activation in healthy hearts. To validate the roles of these transcription factors in maintaining homeostasis, we used single-nucleus RNA-sequencing analysis of transplanted failing hearts focusing on fibroblast remodelling. The trajectory analysis suggested that PKNOX2 was abnormally decreased from fibroblast activation to pathological myofibroblast formation. Both gain- and loss-of-function in vitro experiments demonstrated the inhibitory role of PKNOX2 in pathological fibrosis remodelling. Moreover, fibroblast-specific overexpression and knockout of PKNOX2 in a heart failure mouse model induced by transverse aortic constriction surgery significantly improved and aggravated myocardial fibrosis, respectively. In summary, this study established a high-quality pipeline for single-nucleus RNA-sequencing analysis of heart muscle. With this optimized protocol, we described the transcriptional regulation networks of the main cardiac cell subtypes and identified PKNOX2 as a novel regulator in suppressing fibrosis and a potential therapeutic target for future translational studies.


Assuntos
Fibrose , Proteínas de Homeodomínio , Miocárdio , Animais , Humanos , Masculino , Camundongos , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos Knockout , Miocárdio/patologia , Miocárdio/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia
7.
Nat Commun ; 14(1): 8428, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129407

RESUMO

Hepatic insulin resistance is central to the metabolic syndrome. Here we investigate the role of BTB and CNC homology 1 (BACH1) in hepatic insulin signaling. BACH1 is elevated in the hepatocytes of individuals with obesity and patients with non-alcoholic fatty liver disease (NAFLD). Hepatocyte-specific Bach1 deletion in male mice on a high-fat diet (HFD) ameliorates hyperglycemia and insulin resistance, improves glucose homeostasis, and protects against steatosis, whereas hepatic overexpression of Bach1 in male mice leads to the opposite phenotype. BACH1 directly interacts with the protein-tyrosine phosphatase 1B (PTP1B) and the insulin receptor ß (IR-ß), and loss of BACH1 reduces the interaction between PTP1B and IR-ß upon insulin stimulation and enhances insulin signaling in hepatocytes. Inhibition of PTP1B significantly attenuates BACH1-mediated suppression of insulin signaling in HFD-fed male mice. Hepatic BACH1 knockdown ameliorates hyperglycemia and improves insulin sensitivity in diabetic male mice. These results demonstrate a critical function for hepatic BACH1 in the regulation of insulin signaling and glucose homeostasis.


Assuntos
Hiperglicemia , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Masculino , Camundongos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Dieta Hiperlipídica , Glucose/metabolismo , Homeostase , Hiperglicemia/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo
8.
Cell Rep ; 42(12): 113468, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37995178

RESUMO

The role of BACH1 in the process of vascular smooth muscle cell (VSMC) differentiation from human embryonic stem cells (hESCs) remains unknown. Here, we find that the loss of BACH1 in hESCs attenuates the expression of VSMC marker genes, whereas overexpression of BACH1 after mesoderm induction increases the expression of VSMC markers during in vitro hESC-VSMC differentiation. Mechanistically, BACH1 binds directly to coactivator-associated arginine methyltransferase 1 (CARM1) during in vitro hESC-VSMC differentiation, and this interaction is mediated by the BACH1 bZIP domain. BACH1 recruits CARM1 to VSMC marker gene promoters and promotes VSMC marker expression by increasing H3R17me2 modification, thus facilitating in vitro VSMC differentiation from hESCs after the mesoderm induction. The increased expression of VSMC marker genes by BACH1 overexpression is partially abolished by inhibition of CARM1 or the H3R17me2 inhibitor TBBD in hESC-derived cells. These findings highlight the critical role of BACH1 in hESC differentiation into VSMCs by CARM1-mediated methylation of H3R17.


Assuntos
Células-Tronco Embrionárias Humanas , Humanos , Células-Tronco Embrionárias Humanas/metabolismo , Músculo Liso Vascular/metabolismo , Linhagem Celular , Diferenciação Celular/genética , Metilação , Miócitos de Músculo Liso/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
11.
Cardiovasc Res ; 119(9): 1842-1855, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37279500

RESUMO

AIMS: BACH1 is up-regulated in hypertrophic hearts, but its function in cardiac hypertrophy remains largely unknown. This research investigates the function and mechanisms of BACH1 in the regulation of cardiac hypertrophy. METHODS AND RESULTS: Male cardiac-specific BACH1 knockout mice or cardiac-specific BACH1 transgenic (BACH1-Tg) mice and their respective wild-type littermates developed cardiac hypertrophy induced by angiotensin II (Ang II) or transverse aortic constriction (TAC). Cardiac-specific BACH1 knockout in mice protected the hearts against Ang II- and TAC-induced cardiac hypertrophy and fibrosis, and preserved cardiac function. Conversely, cardiac-specific BACH1 overexpression markedly exaggerated cardiac hypertrophy and fibrosis and reduced cardiac function in mice with Ang II- and TAC-induced hypertrophy. Mechanistically, BACH1 silencing attenuated Ang II- and norepinephrine-stimulated calcium/calmodulin-dependent protein kinase II (CaMKII) signalling, the expression of hypertrophic genes, and hypertrophic growth of cardiomyocytes. Ang II stimulation promoted the nuclear localization of BACH1, facilitated the recruitment of BACH1 to the Ang II type 1 receptor (AT1R) gene promoter, and then increased the expression of AT1R. Inhibition of BACH1 attenuated Ang II-stimulated AT1R expression, cytosolic Ca2+ levels, and CaMKII activation in cardiomyocytes, whereas overexpression of BACH1 led to the opposite effects. The increased expression of hypertrophic genes induced by BACH1 overexpression upon Ang II stimulation was suppressed by CaMKII inhibitor KN93. The AT1R antagonist, losartan, significantly attenuated BACH1-mediated CaMKII activation and cardiomyocyte hypertrophy under Ang II stimulation in vitro. Similarly, Ang II-induced myocardial pathological hypertrophy, cardiac fibrosis, and dysfunction in BACH1-Tg mice were blunted by treatment with losartan. CONCLUSION: This study elucidates a novel important role of BACH1 in pathological cardiac hypertrophy by regulating the AT1R expression and the Ca2+/CaMKII pathway, and highlights potential therapeutic target in pathological cardiac hypertrophy.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Cálcio , Camundongos , Masculino , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Losartan , Cardiomegalia/metabolismo , Miócitos Cardíacos/metabolismo , Camundongos Transgênicos , Angiotensina II/metabolismo , Camundongos Knockout , Fibrose , Camundongos Endogâmicos C57BL
12.
Transplant Direct ; 9(5): e1470, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37090121

RESUMO

Coronary collateral arteries (CCAs) are anastomotic channels between vessels; although beneficial in atherosclerosis, their role in heart transplantation (HT) recipients is underinvestigated. CCAs initially develop as microcirculation and cardiac allograft vasculopathy (CAV), promoting immune-dependent proliferative angiogenic response, and play a role in their development. In our hypothesis, ischemia induced by coronary microvascular dysfunction (CMD) triggers the development of CCAs, which are, in turn, less functional as affected by CAV themselves. Methods: One hundred twenty-one patients receiving HT at our institution were retrospectively evaluated and were included if transthoracic echocardiography with coronary flow velocity reserve (CFVR) assessment and coronary angiography were performed. CMD was defined as CFVR of ≤2.5. Patients with CAV were enrolled, and their angiograms were reviewed to evaluate the presence of CCAs. Cardiovascular mortality was assessed as the main clinical outcome. Results: Forty patients were found to have CCAs. Patients with CCAs have lower CFVR than those without CCAs (2.22 ± 0.72 versus 2.69 ± 0.92;P = 0.003), reflecting in different rates of CMD in the 2 groups (72.5% versus 37%; P < 0.001). CMD is associated with higher CAV grades (P < 0.001), which are also associated with CCAs (P < 0.001). Patients with poorly developed CCAs have lower CFVR (P < 0.001). At multivariable analysis, CMD (P = 0.008) and higher CAV grades (P = 0.005) are independent predictors of CCAs. During the median follow-up time of 10.2 (6.6-13.3) y, patients with CCAs have been found to have higher mortality than those without CCAs (57.5% versus 32.1%; P = 0.007). CCAs are associated with a lower probability of survival also in patients with CMD (P < 0.001) and are independent predictors of mortality (P < 0.001). Conclusions: Our results demonstrate an interplay between CAV, CMD, and CCAs. We confirm that CAV is associated with CMD, and we show, for the first time, that CMD is associated with CCAs. CCAs are pathophysiologically associated with more severe graft vasculopathy and independently predict mortality after HT.

13.
Nucleic Acids Res ; 51(9): 4284-4301, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36864760

RESUMO

The transcription factor BTB and CNC homology 1(BACH1) has been linked to coronary artery disease risk by human genome-wide association studies, but little is known about the role of BACH1 in vascular smooth muscle cell (VSMC) phenotype switching and neointima formation following vascular injury. Therefore, this study aims to explore the role of BACH1 in vascular remodeling and its underlying mechanisms. BACH1 was highly expressed in human atherosclerotic plaques and has high transcriptional factor activity in VSMCs of human atherosclerotic arteries. VSMC-specific loss of Bach1 in mice inhibited the transformation of VSMC from contractile to synthetic phenotype and VSMC proliferation and attenuated the neointimal hyperplasia induced by wire injury. Mechanistically, BACH1 suppressed chromatin accessibility at the promoters of VSMC marker genes via recruiting histone methyltransferase G9a and cofactor YAP and maintaining the H3K9me2 state, thereby repressing VSMC marker genes expression in human aortic smooth muscle cells (HASMCs). BACH1-induced repression of VSMC marker genes was abolished by the silencing of G9a or YAP. Thus, these findings demonstrate a crucial regulatory role of BACH1 in VSMC phenotypic transition and vascular homeostasis and shed light on potential future protective vascular disease intervention via manipulation of BACH1.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Cromatina , Músculo Liso Vascular , Neointima , Fenótipo , Animais , Humanos , Camundongos , Fatores de Transcrição de Zíper de Leucina Básica/deficiência , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Cromatina/genética , Cromatina/metabolismo , Homeostase , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Neointima/genética , Neointima/metabolismo , Neointima/patologia , Neointima/prevenção & controle , Placa Aterosclerótica
14.
Commun Biol ; 6(1): 161, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759717

RESUMO

Fibrotic changes in the myocardium and cardiac arrhythmias represent fatal complications in systemic sclerosis (SSc), however the underlying mechanisms remain elusive. Mice overexpressing transcription factor Fosl-2 (Fosl-2tg) represent animal model of SSc. Fosl-2tg mice showed interstitial cardiac fibrosis, disorganized connexin-43/40 in intercalated discs and deregulated expression of genes controlling conduction system, and developed higher heart rate (HR), prolonged QT intervals, arrhythmias with prevalence of premature ventricular contractions, ventricular tachycardias, II-degree atrio-ventricular blocks and reduced HR variability. Following stimulation with isoproterenol Fosl-2tg mice showed impaired HR response. In contrast to Fosl-2tg, immunodeficient Rag2-/-Fosl-2tg mice were protected from enhanced myocardial fibrosis and ECG abnormalities. Transcriptomics analysis demonstrated that Fosl-2-overexpression was responsible for profibrotic signature of cardiac fibroblasts, whereas inflammatory component in Fosl-2tg mice activated their fibrotic and arrhythmogenic phenotype. In human cardiac fibroblasts FOSL-2-overexpression enhanced myofibroblast signature under proinflammatory or profibrotic stimuli. These results demonstrate that under immunofibrotic conditions transcription factor Fosl-2 exaggerates myocardial fibrosis, arrhythmias and aberrant response to stress.


Assuntos
Cardiomiopatias , Fator de Transcrição AP-1 , Animais , Humanos , Camundongos , Arritmias Cardíacas/genética , Fibrose , Camundongos Transgênicos
16.
Pharmacol Res ; 188: 106667, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36657502

RESUMO

Sodium-glucose cotransporter-2 inhibitors (SGLT2i) are effective, well-tolerated, and safe glucose-lowering compounds for patients with type 2 diabetes mellitus (T2DM). SGLT2i benefit encompasses protection from heart and kidney failure, independently of the presence of diabetes. In addition, SGLT2i consistently reduce the risk of hospitalization for heart failure and, although with some heterogeneity between specific members of the class, favourably affect the risk of cardiovascular outcomes. The molecular mechanisms underlying the cardiovascular favourable effect are not fully clarified. Studies testing the efficacy of SGLT2i in human cohorts and experimental models of atherosclerotic cardiovascular disease (ASCVD) have reported significant differences in circulating levels and composition of lipoprotein classes. In randomized clinical trials, small but significant increases in low-density lipoprotein cholesterol (LDL-C) levels have been observed, with a still undefined clinical significance; on the other hand, favourable (although modest) effects on high-density lipoprotein cholesterol (HDL-C) and triglycerides have been reported. At the molecular level, glycosuria may promote a starving-like state that ultimately leads to a metabolic improvement through the mobilization of fatty acids from the adipose tissue and their oxidation for the production of ketone bodies. This, however, may also fuel hepatic cholesterol synthesis, thus inhibiting atherogenic lipoprotein uptake from the liver. Long-term studies collecting detailed information on lipid-lowering therapies at baseline and during the trials with SGLT2i, as well as regularly monitoring lipid profiles are warranted to disentangle the potential implications of SGLT2i in modulating lipoprotein-mediated atherosclerotic cardiovascular risk.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Aterosclerose/tratamento farmacológico , Triglicerídeos , LDL-Colesterol , Lipoproteínas , Glucose , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle
17.
Eur Heart J ; 44(14): 1216-1230, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36478058

RESUMO

The advent of single-cell biology opens a new chapter for understanding human biological processes and for diagnosing, monitoring, and treating disease. This revolution now reaches the field of cardiovascular disease (CVD). New technologies to interrogate CVD samples at single-cell resolution are allowing the identification of novel cell communities that are important in shaping disease development and direct towards new therapeutic strategies. These approaches have begun to revolutionize atherosclerosis pathology and redraw our understanding of disease development. This review discusses the state-of-the-art of single-cell analysis of atherosclerotic plaques, with a particular focus on human lesions, and presents the current resolution of cellular subpopulations and their heterogeneity and plasticity in relation to clinically relevant features. Opportunities and pitfalls of current technologies as well as the clinical impact of single-cell technologies in CVD patient care are highlighted, advocating for multidisciplinary and international collaborative efforts to join the cellular dots of CVD.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Placa Aterosclerótica , Humanos , Aterosclerose/patologia , Placa Aterosclerótica/patologia
18.
Eur J Prev Cardiol ; 30(2): 149-166, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36098041

RESUMO

A key factor to successful secondary prevention of cardiovascular disease (CVD) is optimal patient adherence to treatment. However, unsatisfactory rates of adherence to treatment for CVD risk factors and CVD have been observed consistently over the last few decades. Hence, achieving optimal adherence to lifestyle measures and guideline-directed medical therapy in secondary prevention and rehabilitation is a great challenge to many healthcare professionals. Therefore, in this European Association of Preventive Cardiology clinical consensus document, a modern reappraisal of the adherence to optimal treatment is provided, together with simple, practical, and feasible suggestions to achieve this goal in the clinical setting, focusing on evidence-based concepts.


Assuntos
Cardiologia , Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Prevenção Secundária , Cooperação do Paciente , Estilo de Vida
19.
Front Cardiovasc Med ; 9: 989428, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304545

RESUMO

Atherosclerotic cardiovascular disease is the leading cause of death worldwide. Intense research in vascular biology has advanced our knowledge of molecular mechanisms of its onset and progression until complications; however, several aspects of the patho-physiology of atherosclerosis remain to be further elucidated. Endothelial cell homeostasis is fundamental to prevent atherosclerosis as the appearance of endothelial cell dysfunction is considered the first pro-atherosclerotic vascular modification. Physiologically, high density lipoproteins (HDLs) exert protective actions for vessels and in particular for ECs. Indeed, HDLs promote endothelial-dependent vasorelaxation, contribute to the regulation of vascular lipid metabolism, and have immune-modulatory, anti-inflammatory and anti-oxidative properties. Sex- and gender-dependent differences are increasingly recognized as important, although not fully elucidated, factors in cardiovascular health and disease patho-physiology. In this review, we highlight the importance of sex hormones and sex-specific gene expression in the regulation of HDL and EC cross-talk and their contribution to cardiovascular disease.

20.
Eur J Prev Cardiol ; 29(17): 2183-2199, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-35989414

RESUMO

Increasing evidence links changes in epigenetic systems, such as DNA methylation, histone modification, and non-coding RNA expression, to the occurrence of cardiovascular disease (CVD). These epigenetic modifications can change genetic function under influence of exogenous stimuli and can be transferred to next generations, providing a potential mechanism for inheritance of behavioural intervention effects. The benefits of exercise and nutritional interventions in the primary and secondary prevention of CVD are well established, but the mechanisms are not completely understood. In this review, we describe the acute and chronic epigenetic effects of physical activity and dietary changes. We propose exercise and nutrition as potential triggers of epigenetic signals, promoting the reshaping of transcriptional programmes with effects on CVD phenotypes. Finally, we highlight recent developments in epigenetic therapeutics with implications for primary and secondary CVD prevention.


Assuntos
Doenças Cardiovasculares , Humanos , Prevenção Secundária , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/prevenção & controle , Exercício Físico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...