Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 4528, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872654

RESUMO

The secretion of osmolytes into a lumen and thereby caused osmotic water inflow can drive fluid flows in organs without a mechanical pump. Such fluids include saliva, sweat, pancreatic juice and bile. The effects of elevated fluid pressure and the associated mechanical limitations of organ function remain largely unknown since fluid pressure is difficult to measure inside tiny secretory channels in vivo. We consider the pressure profile of the coupled osmolyte-flow problem in a secretory channel with a closed tip and an open outlet. Importantly, the entire lateral boundary acts as a dynamic fluid source, the strength of which self-organizes through feedback from the emergent pressure solution itself. We derive analytical solutions and compare them to numerical simulations of the problem in three-dimensional space. The theoretical results reveal a phase boundary in a four-dimensional parameter space separating the commonly considered regime with steady flow all along the channel, here termed "wet-tip" regime, from a "dry-tip" regime suffering ceased flow downstream from the closed tip. We propose a relation between the predicted phase boundary and the onset of cholestasis, a pathological liver condition with reduced bile outflow. The phase boundary also sets an intrinsic length scale for the channel which could act as a length sensor during organ growth.

2.
PLoS Comput Biol ; 13(12): e1005865, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29206229

RESUMO

Chemical reaction networks are ubiquitous in biology, and their dynamics is fundamentally stochastic. Here, we present the software library pSSAlib, which provides a complete and concise implementation of the most efficient partial-propensity methods for simulating exact stochastic chemical kinetics. pSSAlib can import models encoded in Systems Biology Markup Language, supports time delays in chemical reactions, and stochastic spatiotemporal reaction-diffusion systems. It also provides tools for statistical analysis of simulation results and supports multiple output formats. It has previously been used for studies of biochemical reaction pathways and to benchmark other stochastic simulation methods. Here, we describe pSSAlib in detail and apply it to a new model of the endocytic pathway in eukaryotic cells, leading to the discovery of a stochastic counterpart of the cut-out switch motif underlying early-to-late endosome conversion. pSSAlib is provided as a stand-alone command-line tool and as a developer API. We also provide a plug-in for the SBMLToolbox. The open-source code and pre-packaged installers are freely available from http://mosaic.mpi-cbg.de.


Assuntos
Fenômenos Bioquímicos/fisiologia , Biologia Computacional/métodos , Modelos Biológicos , Software , Processos Estocásticos , Algoritmos , Simulação por Computador , Cinética , Reprodutibilidade dos Testes
3.
Cell Syst ; 4(3): 277-290.e9, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28330614

RESUMO

Bile, the central metabolic product of the liver, is transported by the bile canaliculi network. The impairment of bile flow in cholestatic liver diseases has urged a demand for insights into its regulation. Here, we developed a predictive 3D multi-scale model that simulates fluid dynamic properties successively from the subcellular to the tissue level. The model integrates the structure of the bile canalicular network in the mouse liver lobule, as determined by high-resolution confocal and serial block-face scanning electron microscopy, with measurements of bile transport by intravital microscopy. The combined experiment-theory approach revealed spatial heterogeneities of biliary geometry and hepatocyte transport activity. Based on this, our model predicts gradients of bile velocity and pressure in the liver lobule. Validation of the model predictions by pharmacological inhibition of Rho kinase demonstrated a requirement of canaliculi contractility for bile flow in vivo. Our model can be applied to functionally characterize liver diseases and quantitatively estimate biliary transport upon drug-induced liver injury.


Assuntos
Canalículos Biliares/metabolismo , Canalículos Biliares/fisiologia , Sistema Biliar/diagnóstico por imagem , Animais , Bile/metabolismo , Sistema Biliar/metabolismo , Sistema Biliar/fisiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Colestase/metabolismo , Simulação por Computador , Previsões , Hepatócitos/metabolismo , Hidrodinâmica , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA