Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(1): 84-91, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37651259

RESUMO

Aqueous solutions of zirconium and hafnium (M) halides (X) with atomic ratios α = X/M near 1 form glasses on evaporation. Herein, we describe the preparation and properties of these glasses and discuss the nature of the crystal-glass equilibria beyond the pure glass compositions. Small- and wide-angle X-ray scattering (SWAXS) studies reveal increased polymerization as α decreases from 2 to 1. The glasses are found to be much denser than their crystalline counterparts. Crystals forming in contact with glasses retain the well-known Zr-tetrameric hydroxo cluster unit with hydroxide compensating for the lowered halide content. We find that the chemical formulas for all of the solid hydroxohalides may be described by the single parameter α, according to the formula M(OH)4-αXα·(4α - 1)H2O. This description is valid for the crystalline chloride (MOX2·8H2O = M(OH)2X2·7H2O), the glassy solids with α < 2, and hydrolyzed products (α ≈ 0.5). The water content is also determined by α with hydroxide-hydrogen bonding replacing halide-hydrogen bonding as α decreases. A Eu3+-doped Zr,Cl glass exhibits photoluminescence transitions 5D0 → 7Fn (n = 1, 2, and 4) of Eu3+, illustrating the asymmetric nature of the dopant sites in the glass.

2.
Chemistry ; 27(18): 5627-5631, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33543812

RESUMO

Organic semiconductor materials have recently gained momentum due to their non-toxicity, low cost, and sustainability. Xylindein is a remarkably photostable pigment secreted by fungi that grow on decaying wood, and its relatively strong electronic performance is enabled by π-π stacking and hydrogen-bonding network that promote charge transport. Herein, femtosecond transient absorption spectroscopy with a near-IR probe was used to unveil a rapid excited-state intramolecular proton transfer reaction. Conformational motions potentially lead to a conical intersection that quenches fluorescence in the monomeric state. In concentrated solutions, nascent aggregates exhibit a faster excited state lifetime due to excimer formation, confirmed by the excimer→charge-transfer excited-state absorption band of the xylindein thin film, thus limiting its optoelectronic performance. Therefore, extending the xylindein sidechains with branched alkyl groups may hinder the excimer formation and improve optoelectronic properties of naturally derived materials.


Assuntos
Compostos Policíclicos , Prótons , Fungos , Ligação de Hidrogênio , Fenóis
3.
ACS Omega ; 4(8): 13309-13318, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31460459

RESUMO

Organic semiconductors are of interest for (opto)electronic applications due to their low cost, solution processability, and tunable properties. Recently, natural product-derived organic pigments attracted attention due to their extraordinary environmental stability and unexpectedly good optoelectronic performance, in spite of only partially conjugated molecular structure. Fungi-derived pigments are a naturally sourced, sustainable class of materials that are largely unexplored as organic semiconductor materials. We present a study of the optical and electronic properties of a fungi-derived pigment xylindein, which is secreted by the wood-staining fungi Chlorociboria aeruginosa, and its blends with poly(methyl methacrylate) (PMMA) and crystalline nanocellulose (CNC). Optical absorption spectra of xylindein revealed the presence of two tautomers whose structures and properties were established using density functional theory. Pronounced pigment aggregation in polar solvents and in films, driven by intermolecular hydrogen bonding, was also observed. The pigment exhibited high photostability, electron mobility up to 0.4 cm2/(V s) in amorphous films, and thermally activated charge transport and photoresponse with activation energies of ∼0.3 and 0.2 eV, respectively. The dark and photocurrents in xylindein:PMMA blends were comparable to those in pristine xylindein film, whereas blends with CNC exhibited lower currents due to inhomogeneous distribution of xylindein in the CNC.

4.
Artigo em Inglês | MEDLINE | ID: mdl-29869687

RESUMO

Bees have a trichromatic vision with ultraviolet, blue, and green photoreceptors in their compound eyes. While the three photoreceptor types comprise the 'color space' at the perceptual level, preferential excitation of one or two of the photoreceptor types has been shown to play an important role in innate color preferences of bumble bees. Bees have been shown to exhibit strong attraction to fluorescence emission exclusively in the blue spectral region. It is not known if emission exclusively in the green spectral region produces similar attraction. Here, we examined responses of wild bees to traps designed to selectively stimulate either the blue or the green photoreceptor using sunlight-induced fluorescence in the 420-480 or 510-540 nm region, respectively. Additionally, we probed how subtle changes in the spectral characteristics of the traps affect the bee captures once a highly selective excitation of the blue photoreceptor is achieved. It was established that selective excitation of the green photoreceptor type was not attractive, in contrast to that of the blue photoreceptor type. However, once a highly selective excitation of the blue photoreceptor type (at ~ 400-480 nm) was achieved, the wild bees favored strong excitation at 430-480 nm over that in the 400-420 nm region.


Assuntos
Abelhas , Comportamento Animal , Visão de Cores , Luz , Células Fotorreceptoras de Invertebrados , Animais , Animais Selvagens , Abelhas/fisiologia , Comportamento Animal/fisiologia , Percepção de Cores , Visão de Cores/fisiologia , Atividade Motora , Células Fotorreceptoras de Invertebrados/fisiologia , Plantas , Espectrometria de Fluorescência
5.
Chem Rev ; 116(22): 13279-13412, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27723323

RESUMO

Organic (opto)electronic materials have received considerable attention due to their applications in thin-film-transistors, light-emitting diodes, solar cells, sensors, photorefractive devices, and many others. The technological promises include low cost of these materials and the possibility of their room-temperature deposition from solution on large-area and/or flexible substrates. The article reviews the current understanding of the physical mechanisms that determine the (opto)electronic properties of high-performance organic materials. The focus of the review is on photoinduced processes and on electronic properties important for optoelectronic applications relying on charge carrier photogeneration. Additionally, it highlights the capabilities of various experimental techniques for characterization of these materials, summarizes top-of-the-line device performance, and outlines recent trends in the further development of the field. The properties of materials based both on small molecules and on conjugated polymers are considered, and their applications in organic solar cells, photodetectors, and photorefractive devices are discussed.

6.
Artigo em Inglês | MEDLINE | ID: mdl-25666705

RESUMO

Bees have ultraviolet (UV), blue and green photoreceptor types in their compound eyes with which they locate food sources in landscapes that change continuously in cues emanating from plants and backgrounds against which they are perceived. The complexity of bee vision has been elucidated through studies examining individual species under laboratory conditions. Here, we used a bee-attractive fluorescent blue trap as a model for analyzing visual signals in operation outdoors, and across bee species. We manipulated trap color (appearance to humans under light with weak UV component) and UV-induced fluorescence emission, and aligned field capture results with bee vision models. Our studies show that the bees were attracted to traps that under solar illumination exhibited strong fluorescence emission exclusively in the blue spectral region. Through quantitative analysis, we established that strong spectral overlap of trap emittance with the photosensitivity characteristic of the blue receptor type and minimal overlap with those of the other two receptor types is the most critical property of attractive traps. A parameter has been identified which predicts the degree of attractiveness of the traps and which captures trends in the field data across wild bee species and for a diversity of backgrounds.


Assuntos
Abelhas/fisiologia , Fluorescência , Células Fotorreceptoras de Invertebrados/fisiologia , Luz Solar , Visão Ocular/fisiologia , Animais , Animais Selvagens , Atividade Motora , Estimulação Luminosa , Fótons , Psicofísica , Especificidade da Espécie , Análise Espectral
7.
Chem Commun (Camb) ; 48(66): 8261-3, 2012 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-22786553

RESUMO

Acenes larger than pentacene are predicted to possess enticing electronic properties, but are insoluble and prone to rapid decomposition. Utilizing a combination of functionalization strategies, we present stable, solution-processable hexacenes and an evaluation of their hole and electron transport properties.

8.
Chem Rev ; 104(7): 3267-314, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15250742
9.
Opt Lett ; 28(24): 2509-11, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-14690130

RESUMO

We report the first observation, to our knowledge, of self-trapping of light as well as optically induced focusing-to-defocusing switching in an organic photorefractive glass, owing to the orientationally enhanced photorefractive nonlinearity of the material.

10.
Chemphyschem ; 4(7): 732-44, 2003 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-12901305

RESUMO

We present a detailed temperature-dependence study of dielectric, birefringent, conductive, and photorefractive (PR) properties of high-performance low-molecular weight organic glasses that contain 2-dicyanomethylene-3-cyano-2,5-dihydrofuran (DCDHF) derivatives. DCDHF organic glasses sensitized with C60 exhibit high two-beam coupling gain coefficients in the red-wavelength region. However, in the best performing DCDHF glasses at room temperature the PR dynamics are limited by slow molecular reorientation in the electric field. While orientational and, therefore, PR speed can be significantly improved by increasing the temperature above the glass-transition temperature of the material, the steady-state performance may worsen. Comprehensive study of the temperature dependence of various processes, which contribute to the PR effect in DCDHF glasses, clarifies the limiting factors and allows for optimization of the overall PR performance.

11.
J Am Chem Soc ; 125(5): 1174-5, 2003 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-12553812

RESUMO

Nonlinear optical chromophores based on dicyanodihydrofuran acceptors paired with amine donors have been found to exhibit sufficiently large fluorescence quantum yields and stability to enable single-molecule detection in polymeric hosts. To illustrate the breadth of this class, six fluorophores are presented, spanning the emission range from 505 to 646 nm. In contrast to conventional single-molecule fluorophores, the new molecules feature sensitivity to local rigidity, large ground-state dipole moments, and large polarizability anisotropies, properties that can be used to design new reporter experiments at the single-molecule level.


Assuntos
Aminas/química , Corantes Fluorescentes/química , Furanos/química , Fluorometria , Fotoquímica , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...