Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 13(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36831974

RESUMO

The tailoring of novel nanomaterials for sensitive glucose detection through a non-enzymatic mechanism is currently under intensive research. Here, we present a laser-induced graphene (LIG) electrode decorated with silver nanoparticles (AgNPs) as a catalytic element for the direct electrooxidation of glucose. The AgNPs were synthesized through cyclic voltammetry using LIG as a template, resulting in a porous tridimensional assembly with anchored nanostructures. The characterization corroborated the formation of LIG/AgNPs composite with distinctive peaks attributed to Ag2O and AgO interaction with glucose. The proposed non-enzymatic sensors were successfully applied for non-enzymatic amperometric detection, exhibiting a linear range from 1 to 10 mM in the first peak (+0.7 V) and a narrow range from 1 to 2 mM with higher sensitivity of 52.2 mA/mM and improved LOD of 45 µM in the second peak (+0.55 V). The applicability of the LIG/AgNPs sensor was evaluated with spiked artificial saliva in a PoC format using a smartphone potentiostat, showing an average recovery rate of 91%. The analysis was performed in a portable, mobile, and low-cost fashion using a simulated non-invasive sample, with promising results in clinical ranges.


Assuntos
Grafite , Nanopartículas Metálicas , Nanopartículas Metálicas/química , Grafite/química , Prata/química , Glucose/análise , Catálise , Técnicas Eletroquímicas/métodos
2.
Polymers (Basel) ; 14(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36365647

RESUMO

The structural modification of biopolymers is a current strategy to develop materials with biomedical applications. Silk fibroin is a natural fiber derived from a protein produced by the silkworm (Bombyx mori) with biocompatible characteristics and excellent mechanical properties. This research reports the structural modification of silk fibroin by incorporating polyaniline chain grafts through a one-pot process (esterification reaction/oxidative polymerization). The structural characterization was achieved by 1H-NMR and FT-IR. The morphology was studied by scanning electron microscopy and complemented with thermogravimetric analysis to understand the effect of the thermal stability at each step of the modification. Different fibroin silk (Fib): polyaniline (PAni) mass ratios were evaluated. From this evaluation, it was found that a Fib to PAni ratio of at least 1 to 0.5 is required to produce electroactive polyaniline, as observed by UV-vis and CV. Notably, all the fibroin-g-PAni systems present low cytotoxicity, making them promising systems for developing biocompatible electrochemical sensors.

3.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897666

RESUMO

In this research, a brush-like polyaniline (poly(2-acrylamide-2-methyl-1-propanesulfonate)-g-polyaniline)-b-poly(N-vinylcarbazole) (BL PAni) was developed as a strategy to overcome the limited processability and dedoping above pH 4 of conventional polyaniline (PAni). For the BL PAni synthesis, RAFT polymerization (homopolymer), RAFT-mediated surfactant-free emulsion polymerization (block copolymer), and interfacial oxidative polymerization were applied to graft the PAni chains. NMR and FT-IR spectroscopies were performed to confirm the structural elucidation of the reaction pathways, while the thermal properties were analyzed by TGA and DSC. Notably, the BL PAni presents absorption throughout the visible region and up to the near-infrared, showing dedoping resistance at up to 80 °C and at a neutral pH. The absorption range of the BL PAni, block copolymer, and homopolymer were studied by UV-Vis spectroscopy in solid-state and dispersion/solution, highlighting BL PAni and poly(anilinium 2-acrylamide-2-methyl-1-propanesulfonate)-b-poly(N-vinylcarbazole) (PAAMP-b-PVK) due to the π-stacking between the anilinium and carbazole groups. The cyclic voltammetry confirmed the persistence of electroactivity at a pH near 7.


Assuntos
Acrilamidas , Polímeros , Compostos de Anilina , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
4.
Biosensors (Basel) ; 12(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35323407

RESUMO

Glucose measurement is a fundamental tool in the daily care of Diabetes Mellitus (DM) patients and healthcare professionals. While there is an established market for glucose sensors, the rising number of DM cases has promoted intensive research to provide accurate systems for glucose monitoring. Polyaniline (PAni) is a conductive polymer with a linear conjugated backbone with sequences of single C-C and double C=C bonds. This unique structure produces attractive features for the design of sensing systems such as conductivity, biocompatibility, environmental stability, tunable electrochemical properties, and antibacterial activity. PAni-based glucose sensors (PBGS) were actively developed in past years, using either enzymatic or non-enzymatic principles. In these devices, PAni played roles as a conductive material for electron transfer, biocompatible matrix for enzymatic immobilization, or sensitive layer for detection. In this review, we covered the development of PBGS from 2015 to the present, and it is not even exhaustive; it provides an overview of advances and achievements for enzymatic and non-enzymatic PBGB PBGS for self-monitoring and continuous blood glucose monitoring. Additionally, the limitations of PBGB PBGS to advance into robust and stable technology and the challenges associated with their implementation are presented and discussed.


Assuntos
Técnicas Biossensoriais , Diabetes Mellitus , Compostos de Anilina/química , Glicemia , Automonitorização da Glicemia , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/terapia , Glucose , Humanos
5.
Polymers (Basel) ; 14(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35160621

RESUMO

Renewable polymers possess the potential to replace monomers from petrochemical sources. The design and development of polymeric materials from sustainable materials are a technological challenge. The main objectives of this study were to study the microstructure of copolymers based on itaconic acid (IA), di-n-butyl itaconate (DBI), and lauryl methacrylate (LMA); and to explore and to evaluate these copolymers as pressure-sensitive adhesives (PSA). The copolymer synthesis was carried out through batch emulsion radical polymerization, an environmentally friendly process. IA was used in a small fixed amount as a functional comonomer, and LMA was selected due to low glass transition temperature (Tg). The structure of synthesized copolymers was studied by FTIR, 1H-NMR, Soxhlet extraction, and molecular weight analyses by GPC. Furthermore, the viscoelastic and thermal properties of copolymer films were characterized by DMA, DSC, and TGA. The single Tg displayed by the poly(DBI-LMA-IA) terpolymers indicates that statistical random composition copolymers were obtained. Moreover, FTIR and NMR spectra confirm the chemical structure and composition. It was found that a cross-linked microstructure and higher molecular weight are observed with an increase of LMA in the feed led. The Tg and modulus (G') of the copolymers film can be tuned with the ratio of DBI:LMA providing a platform for a wide range of applications as a biobased alternative to produce waterborne PSA.

6.
Sensors (Basel) ; 18(4)2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29614003

RESUMO

The high incidence of Diabetes Mellitus in low-income regions has promoted the development of low-cost alternatives to replace blood-based procedures. In this work, we present a bienzymatic paper-based sensor suitable for the naked-eye detection of glucose in saliva samples. The sensor was obtained by a stamping procedure and modified with chitosan to improve the colorimetric readout. The bienzymatic reaction of GOx-HRP coupled with 2,4,6-tribromo-3-hydroxy benzoic acid was applied for the detection of glucose within a range from 0 to 180 mgdL-1 in buffer and artificial saliva solutions. The visual readout was perceived by the naked eye and registered with an office scanner to evaluate the analytical performance. The results showed a limit of detection of 0.37 mgdL-1 (S/N = 3) with an R.S.D. of 1.69% and a linear range from 1 to 22.5 mgdL-1 with an R² of 0.99235. The analysis of human saliva samples was performed without pre-processing, achieving recoveries from 92 to 114%. The naked-eye detection was evaluated under two different light settings, showing average recoveries of 108.58 and 90.65% for standard and low illumination. The proposed device showed potential for easy-to-use, sensitive, low-cost, fast, and device-free detection of salivary glucose suitable for untrained personnel operation and limited facilities.


Assuntos
Saliva , Colorimetria , Olho , Glucose , Humanos , Papel , Visão Ocular
7.
Nanomaterials (Basel) ; 8(2)2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29438280

RESUMO

Graphite oxide is synthesized via oxidation reaction using oxidant compounds that have lattice defects by the incorporation of unlike functional groups. Herein, we report the synthesis of the graphite oxide with diverse surface oxygen content through three (B, C, D) different modified versions of the Hummers method assisted microwave radiation compared with the conventional graphite oxide sample obtained by Hummers method (A). These methods allow not only the production of graphite oxide but also reduced graphene oxide, without undergoing chemical, thermal, or mechanical reduction steps. The values obtained of C/O ratio were ~2, 3.4, and ~8.5 for methodologies C, B, and D, respectively, indicating the presence of graphite oxide and reduced graphene oxide, according to X-ray photoelectron spectroscopy. Raman spectroscopy of method D shows the fewest structural defects compared to the other methodologies. The results obtained suggest that the permanganate ion produces reducing species during graphite oxidation. The generation of these species is attributed to a reversible reaction between the permanganate ion with π electrons, ions, and radicals produced after treatment with microwave radiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...