Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IUCrJ ; 10(Pt 6): 766-771, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910142

RESUMO

Phosphorus exists in several different allotropes: white, red, violet and black. For industrial and academic applications, white phosphorus is the most important. So far, three polymorphs of white phosphorus, all consisting of P4 tetrahedra, have been described. Among these, ß-P4 crystallizes in the space group P1 and γ-P4 in the space group C2/m. α-P4 forms soft plastic crystals with a proposed structure in the cubic space group I43m with the lattice constant a = 18.51 (3) Å, consisting of 58 rotationally disordered tetrahedra and thus is similar to the structure of α-Mn. Here we present a new polymorph, δ-P4. It crystallizes as a sixfold twin with the cell dimensions a = 18.302 (2), b = 18.302 (2), c = 36.441 (3) Šin the space group P212121 with 29 P4 tetrahedra in the asymmetric unit. The arrangement resembles the structure of α-Mn, but δ-P4 differs from α-P4. DFT calculations show δ-P4 to be metastable at a similar energy level to that of γ-P4.

2.
Inorg Chem ; 60(1): 449-459, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33332100

RESUMO

The dynamics of the photodriven charge transfer-induced spin transition (CTIST) in two Fe/Co Prussian Blue Analogues (PBAs) are revealed by femtosecond IR and UV/vis pump-probe spectroscopy. Depending on temperature, the known tetranuclear square-type complex [Co2Fe2(CN)6(tp*)2(4,4'-dtbbpy)4](PF6)2 (1) exists in two electronic states. In acetonitrile solution, at <240 K, the low temperature (LT) phase is prevalent consisting of low-spin Fe(II) and low-spin Co(III), [FeIILSCoIIILS]2. Temperature rise is the reason behind thermally-induced CTIST toward the high temperature (HT) phase consisting of low-spin Fe(III) and high-spin Co(II), [FeIIILSCoIIHS]2, being prevalent at >300 K. Photoexcitation into the intervalence charge transfer (IVCT) band of the LT phase at 800 nm induces electron transfer in one Fe-Co edge of PBA 1 and produces a [FeIIILSCoIILS] intermediate which by spin-crossover (SCO) is stabilized within 400 fs to a long-lived (>1 ns) [FeIIILSCoIIHS] species. In contrast, IVCT excitation of the HT phase at 400 nm generates a [FeIILSCoIIIHS] species with a lifetime of 3.6 ps. Subsequent back-electron transfer populates the vibrationally hot ground state, which thermalizes within 8 ps. The newly synthesized dinuclear PBA, [CoFe(CN)3(tp*)(pz*4Lut)]ClO4 (2), provides a benchmark of the HT phase of 1, i.e., [FeIIILSCoIIHS], as verified by variable temperature magnetic susceptibility measurements and 57Fe Mössbauer spectroscopy. The photoinduced charge transfer dynamics of PBA 2 indeed are almost identical to that of the HT phase of PBA 1 with a lifetime of the excited [FeIILSCoIIIHS] species of 3.8 ps.

3.
J Am Chem Soc ; 139(46): 16720-16731, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29037034

RESUMO

A compartmental ligand scaffold HL with two ß-diketiminato binding sites spanned by a pyrazolate bridge gave a series of dinuclear nickel(II) dihydride complexes M[LNi2(H)2], M = Na (Na·2) and K (K·2), which were isolated after reacting the precursor complex [LNi2(µ-Br)] (1) with MHBEt3 (M = Na and K). Crystallographic characterization showed the two hydride ligands to be directed into the bimetallic pocket, closely interacting with the alkali metal cation. Treatment of K·2 with dibenzo(18-crown-6) led to the separated ion pair [LNi2(H)2][K(DB18C6)] (2[K(DB18C6)]). Reaction of Na·2 or K·2 with D2 was investigated by a suite of 1H and 2H NMR experiments, revealing an unusual pairwise H2/D2 exchange process that synchronously involves both Ni-H moieties without H/D scrambling. A mechanistic picture was provided by DFT calculations which suggested facile recombination of the two terminal hydrides within the bimetallic cleft, with a moderate enthalpic barrier of ∼62 kJ/mol, to give H2 and an antiferromagnetically coupled [LNiI2]- species. This was confirmed by SQUID monitoring during H2 release from solid 2[K(DB18C6)]. Interaction with the Lewis acid cation (Na+ or K+) significantly stabilizes the dihydride core. Kinetic data for the M[L(Ni-H)2] → H2 transition derived from 2D 1H EXSY spectra confirmed first-order dependence of H2 release on M·2 concentration and a strong effect of the alkali metal cation M+. Treating [LNi2(D)2]- with phenylacetylene led to D2 and dinickel(II) complex 3- with a twice reduced styrene-1,2-diyl bridging unit in the bimetallic pocket. Complexes [LNiII2(H)2]- having two adjacent terminal hydrides thus represent a masked version of a highly reactive dinickel(I) core. Storing two reducing equivalents in adjacent metal hydrides that evolve H2 upon substrate binding is reminiscent of the proposed N2 binding step at the FeMo cofactor of nitrogenase, suggesting the use of the present bimetallic scaffold for reductive bioinspired activation of a range of inert small molecules.

4.
J Phys Chem A ; 119(21): 5158-64, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25405989

RESUMO

Accurate bond dissociation energies (D0) are reported for different isotopologues of the highly anharmonic system ClHCl(-). The mass-independent equilibrium dissociation energy De was obtained by a composite method with frozen-core (fc) CCSD(T) as the basic contribution. Basis sets as large as aug-cc-pV8(+d)Z were employed, and extrapolation to the complete basis set (CBS) limit was carried out. Explicitly correlated calculations with the CCSD(T)-F12b method were also performed to support the conventionally calculated values. Core-core and core-valence correlation, scalar relativity, and higher-order correlation were considered as well. Two mass-dependent contributions, namely, the diagonal Born-Oppenheimer correction and the difference in zero-point energies between the complex and the HCl fragment, were then added in order to arrive at precise D0 values. Results for (35)ClH(35)Cl(-) and (35)ClD(35)Cl(-) are 23.81 and 23.63 kcal/mol, respectively, with estimated uncertainties of 0.05 kcal/mol. In contrast to FHF(-) ( Stein , C. ; Oswald , R. ; Sebald , P. ; Botschwina , P. ; Stoll , H. , Peterson , K. A. Mol. Phys. 2013 , 111 , 2647 - 2652 ), the D0 values of the bichloride species are larger than their De counterparts, which is an unusual situation in hydrogen-bonded systems.

5.
J Phys Chem A ; 117(50): 13806-14, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24111977

RESUMO

An accurate near-equilibrium potential energy surface (PES) has been constructed for the azide ion (N(3)(-)) on the basis of coupled cluster calculations up to CCSDTQ (Kállay, M.; Surján, P. R. J. Chem. Phys. 2001, 115, 2945.), with contributions from inner-shell correlation and special relativity being taken into account as well. A larger number of rovibrational states has been investigated by variational calculations with Watson's isomorphic Hamiltonian for linear molecules. Analogous calculations for CO2 demonstrate the high quality of this type of calculations. The G(v) values of the symmetric stretching and bending vibration of 14N(3)(-) are predicted to be ν1 = 1307.9 cm(-1) and ν2 = 629.3 cm(-1), with an uncertainty of ca. 1 cm(-1). Fermi resonance is less pronounced for the lower polyads of 14N(3)(-) compared with 12C16O2 but is as strong as in CO2 for the lowest diad of isotopologue 15-14-15. The band origin of the antisymmetric stretching vibration of 14N(3)(-) is calculated to be ν3 = 1986.4 cm(-1), only 0.1 cm(-1) lower than the experimental value. The corresponding vibrational transition dipole moment is predicted to be as large as µ = 0.476 D, 46% higher than calculated for CO2. The perturbed combination tone (01(1)1), which was accessible through diode laser IR spectroscopy, undergoes anharmonic interaction with at least two other vibrational states.

6.
Phys Chem Chem Phys ; 15(18): 6737-48, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23549111

RESUMO

Explicitly correlated coupled cluster theory at the CCSD(T*)-F12b level (T. B. Adler, G. Knizia, and H.-J. Werner, J. Chem. Phys., 2007, 127, 221106) and two precise spectroscopic parameters (K. Kawaguchi, J. Chem. Phys., 1988, 88, 4186) were used to construct an accurate near-equilibrium analytical potential energy function (PEF) for the highly anharmonic centrosymmetric hydrogen-bonded complex ClHCl(-) (Re = 3.1153 Å). From variational calculations with that PEF, a large number of rovibrational energies of different isotopologues up to high values of the rotational quantum number J was obtained. Theory helped with the assignment of lines observed by IR diode laser spectroscopy in the ν1 + ν3 combination band of (35)ClH(35)Cl(-) and (37)ClH(35)Cl(-) and enabled us to elucidate rather subtle patterns of rovibrational interactions. Furthermore, transition dipole moments were predicted and analysed as well as unusual isotopic effects.

7.
J Phys Chem A ; 117(39): 9695-703, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23421811

RESUMO

Explicitly correlated coupled cluster theory at the CCSD(T*)-F12b level in conjunction with the aug-cc-pV5Z basis set has been used in the calculation of three-dimensional potential energy and dipole moment surfaces for the bifluoride ion (FHF(-)). An empirically corrected analytical potential energy function (PEF) was obtained by fit to four pieces of accurate spectroscopic information. That PEF was used in variational calculations of energies and wave functions for a variety of rovibrational states of the isotopologues FHF(-), FDF(-), and FTF(-). Excellent agreement with available data from IR laser diode spectroscopy is observed and many predictions are being made. Unusual isotope effects among the spectroscopic constants and unusual features of the calculated line spectra are discussed.

8.
J Chem Phys ; 138(1): 014307, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23298041

RESUMO

The electronic ground state (X(2)B(1)) of the cyclohexadienyl radical (c-C(6)H(7)) has been studied by explicitly correlated coupled cluster theory at the RCCSD(T)-F12x (x = a, b) level, partly in combination with the double-hybrid density functional method B2PLYP. An accurate equilibrium structure has been established and the ground-state rotational constants are predicted to be A(0) = 5347.3 MHz, B(0) = 5249.7 MHz, and C(0) = 2692.5 MHz. The calculated vibrational wavenumbers agree well with the recent p-H(2) matrix IR data [M. Bahou, Y.-J. Wu, and Y.-P. Lee, J. Chem. Phys. 136, 154304 (2012)] and several predictions have been made. A low value of 6.803 ± 0.005 eV is predicted for the adiabatic ionization energy of c-C(6)H(7). Owing to a moderately large change in the equilibrium structure upon ionization, the first band of the photoelectron spectrum is dominated by the adiabatic peak (100%) and only the peaks corresponding to excitation of the two lowest totally symmetric vibrations (ν(12) and ν(11)) by one vibrational quantum have relative intensities of more than 15%. The C(6)H(6)-H dissociation energy is calculated to be D(0) = 85.7 kJ mol(-1), with an estimated error of ~2 kJ mol(-1).

9.
J Chem Phys ; 136(20): 204301, 2012 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-22667554

RESUMO

Complexes of the benzenium ion (C(6)H(7)(+)) with N(2) or CO(2) have been studied by explicitly correlated coupled cluster theory at the CCSD(T)-F12x (x = a, b) level [T. B. Adler et al., J. Chem. Phys. 127, 221106 (2007)] and the double-hybrid density functional B2PLYP-D [T. Schwabe and S. Grimme, Phys. Chem. Chem. Phys. 9, 3397 (2007)]. Improved harmonic vibrational wavenumbers for C(6)H(7)(+) have been obtained by CCSD(T∗)-F12a calculations with the VTZ-F12 basis set. Combining them with previous B2PLYP-D anharmonic contributions we arrive at anharmonic wavenumbers which are in excellent agreement with recent experimental data from p-H(2) matrix isolation IR spectroscopy [M. Bahou et al., J. Chem. Phys. 136, 154304 (2012)]. The energetically most favourable conformer of C(6)H(7)(+)·N(2) shows a π-bonded structure similar to C(6)H(7)(+)·Rg (Rg = Ne, Ar) [P. Botschwina and R. Oswald, J. Phys. Chem. A 115, 13664 (2011)] with D(e) ≈ 870 cm(-1). For C(6)H(7)(+)·CO(2), a slightly lower energy is calculated for a conformer with the CO(2) ligand lying in the ring-plane of the C(6)H(7)(+) moiety (D(e) ≈ 1508 cm(-1)). It may be discriminated from other conformers through a strong band predicted at 1218 cm(-1), red-shifted by 21 cm(-1) from the corresponding band of free C(6)H(7)(+).

10.
J Phys Chem A ; 116(13): 3448-53, 2012 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-22380571

RESUMO

The fulvenallenyl cation (C(7)H(5)(+)) and its complex with an argon atom have been studied by explicitly correlated coupled cluster theory at the CCSD(T)-F12x(x = a, b) level and by the double-hybrid density functional B2PLYP-D. For the free cation, an accurate equilibrium structure has been established and ground-state rotational constants of A(0) = 8116.4 MHz, B(0) = 2004.3 MHz, and C(0) = 1606.9 MHz are predicted. The equilibrium dipole moment is calculated to be µ(e) = 1.305 D, with the positive end of the dipole at the acetylenic hydrogen site. Anharmonic wavenumbers of C(7)H(5)(+) were obtained by combination of harmonic CCSD(T*)-F12a values and B2PLYP-D anharmonic contributions. The most intense vibration is the pseudoantisymmetric CC stretching vibration at 2083 cm(-1). The potential energy surface of the complex C(7)H(5)(+)·Ar is characterized by two energy minima of C(s) symmetry which are separated by a very low energy barrier. The dissociation energy of the most stable structure is predicted to be D(0) = 530 ± 30 cm(-1).

11.
J Phys Chem A ; 115(46): 13664-72, 2011 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21981720

RESUMO

Explicitly correlated coupled cluster theory at the CCSD(T)-F12x (x = a, b) level (Adler, T. B.; Knizia, G.; Werner, H.-J. J. Chem. Phys. 2007, 127, 221106) has been employed in a study of the benzenium ion (C6H7(+)) and its complexes with a neon or an argon atom. The ground-state rotational constants of C6H7(+) are predicted to be A0 = 5445 MHz, B0 = 5313 MHz, and C0 = 2731 MHz. Anharmonic vibrational wavenumbers of this cation were obtained by combination of harmonic CCSD(T*)-F12a values with anharmonic contributions calculated by double-hybrid density functional theory at the B2PLYP-D level. For the complexes of C6H7(+) with Ne or Ar, the lowest energy minimum is of π-bonded structure. The corresponding dissociation energies D0 are estimated to be 160 and 550 cm(-1), respectively. There is no indication of H-bonds to the aromatic or aliphatic hydrogen atoms. Instead, three nonequivalent local energy minima were found for nuclear configurations where the rare-gas atom lies in the ring-plane and approximatly points to the center of one of the six CC bonds.

12.
Phys Chem Chem Phys ; 13(31): 14163-75, 2011 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-21637871

RESUMO

Explicitly correlated coupled cluster theory at the CCSD(T)-F12x level (T. B. Adler, G. Knizia, and H.-J. Werner, J. Chem. Phys.127, 221106, 2007) has been employed to study structures and vibrations of complexes of type c-C(3)H(3)(+)·L and H(2)C(3)H(+)·L (L = Ne, Ar, N(2), CO(2), and O(2)). Both cations have different binding sites, allowing for the formation of weak to moderately strong hydrogen bonds as well as "C-bound" or "π-bound" structures. In contrast to previous expectations, the energetically most favourable structures of all H(2)C(3)H(+)·L complexes investigated are "C-bound", with the ligand bound to the methylenic carbon atom. The theoretical predictions enable a more detailed interpretation of infrared photodissociation (IRPD) spectra than was possible hitherto. In particular, the bands observed in the range 3238-3245 cm(-1) (D. Roth and O. Dopfer, Phys. Chem. Chem. Phys.4, 4855, 2002) are assigned to essentially free acetylenic CH stretching vibrations of the propargyl cation in "C-bound" H(2)C(3)H(+)·L complexes.

13.
Phys Chem Chem Phys ; 13(13): 6340-51, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21365078

RESUMO

Ultrafast transient broadband absorption spectroscopy based on the Pump-Supercontinuum Probe (PSCP) technique has been applied to characterize the excited state dynamics of the newly-synthesized artificial ß-carotene derivative 13,13'-diphenyl-ß-carotene in the wavelength range 340-770 nm with ca. 60 fs cross-correlation time after excitation to the S(2) state. The influence of phenyl substitution at the polyene backbone has been investigated in different solvents by comparing the dynamics of the internal conversion (IC) processes S(2)→ S(1) and S(1)→ S(0)* with results for ß-carotene. Global analysis provides IC time constants and also time-dependent S(1) spectra demonstrating vibrational relaxation processes. Intramolecular vibrational redistribution processes are accelerated by phenyl substitution and are also solvent-dependent. DFT and TDDFT-TDA calculations suggest that both phenyl rings prefer an orientation where their ring planes are almost perpendicular to the plane of the carotene backbone, largely decoupling them electronically from the polyene system. This is consistent with several experimental observations: the up-field chemical shift of adjacent hydrogen atoms by a ring-current effect of the phenyl groups in the (1)H NMR spectrum, a small red-shift of the S(0)→ S(2)(0-0) transition energy in the steady-state absorption spectrum relative to ß-carotene, and almost the same S(1)→ S(0)* IC time constant as in ß-carotene, suggesting a similar S(1)-S(0) energy gap. The oscillator strength of the S(0)→ S(2) transition of the diphenyl derivative is reduced by ca. 20%. In addition, we observe a highly structured ground state bleach combined with excited state absorption at longer wavelengths, which is typical for an "S* state". Both features can be clearly assigned to absorption of vibrationally hot molecules in the ground electronic state S(0)* superimposed on the bleach of room temperature molecules S(0). The S(0)* population is formed by IC from S(1). These findings are discussed in detail with respect to alternative interpretations previously reported in the literature. Understanding the dynamics of this type of artificial phenyl-substituted carotene systems appears useful regarding their future structural optimization with respect to enhanced thermal stability while keeping the desired photophysical properties.

14.
Phys Chem Chem Phys ; 13(17): 7921-9, 2011 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-21445420

RESUMO

The vibrations of the propargyl cation (H(3)C(3)H(+)) have been studied by vibrational configuration interaction (VCI) calculations, using explicitly correlated coupled cluster theory at the CCSD(T*)-F12a level to determine the underlying 12-dimensional potential energy surface. The wavenumbers of the fundamental vibrations are predicted with an accuracy of ca. 5 cm(-1). Harmonic wavenumber shifts for three different energy minima of the complex H(2)C(3)H(+)·Ar are combined with the corresponding VCI values in order to provide a comparison with recent infrared photodissociation (IRPD) spectra (A. M. Ricks et al., J. Chem. Phys., 2010, 132, 051101). An excellent agreement between experiment and theory is obtained for bands ν(2) (symm. CH stretch), ν(3) (pseudoantisymm. CC stretch), and ν(4) (CH(2) scissoring). However, reassignments are suggested for the bands observed at 3238 cm(-1), the "doublets" around 3093 and 1111 cm(-1), and the band at 3182 cm(-1). The assignment of the latter to the asymmetric CH stretching vibration of c-C(3)H·Ar is certainly wrong; the combination tone ν(3) + ν(5) of H(2)C(3)H(+)·Ar is a more likely candidate. Furthermore, accurate proton affinities are predicted for the carbenes H(2)C(n) with n = 3-8, thereby providing data of interest for interstellar cloud chemistry.

15.
J Chem Phys ; 134(4): 044305, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21280723

RESUMO

Explicitly correlated coupled cluster theory at the CCSD(T)-F12x (x = a, b) level [T. B. Adler et al., J. Chem. Phys. 127, 221106 (2007)] has been employed in a study of the potential energy surfaces for the complexes H(2)C(3)H(+) · Ar and c-C(3)H(3)(+) · Ar. For the former complex, a pronounced minimum with C(s) symmetry was found (D(e) ≈ 780 cm(-1)), well below the local "H-bound" minimum with C(2v) symmetry (D(e) ≈ 585 cm(-1)). The absorption at 3238 cm(-1) found in the recent infrared photodissociation spectra [A. M. Ricks et al., J. Chem. Phys. 132, 051101 (2010)] is, thus, interpreted as an essentially free acetylenic CH stretching vibration of the propargyl cation. A global minimum of C(s) symmetry was also obtained for c-C(3)H(3)(+) (D(e) ≈ 580 cm(-1)), but the energy difference with respect to the local C(2v) minimum is only 54 cm(-1).

16.
Phys Chem Chem Phys ; 12(31): 8832-9, 2010 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-20532267

RESUMO

The so-called S* state has been suggested to play an important role in the photophysics of beta-carotene and other carotenoids in solution and photosynthetic light-harvesting complexes, yet its origin has remained elusive. The present experiments employing temperature-dependent steady-state absorption spectroscopy and ultrafast pump-supercontinuum probe (PSCP) transient absorption measurements of beta-carotene in solution demonstrate that the spectral features of S* are due to vibrationally excited molecules in the ground electronic state S(0). Characteristic spectral signatures, such as a highly structured bleach below 500 nm and absorption in the range 500-660 nm result from the superposition of hot S(0) absorption ("S(0)*") on top of the ground-state bleach of room-temperature molecules. Appearance and disappearance of the S(0)* molecules can be completely described by a global kinetic analysis employing time-dependent species-associated spectra without the need to invoke the population of an intermediate electronically excited state.

17.
J Phys Chem A ; 114(36): 9782-7, 2010 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-20515051

RESUMO

Propadienylidene (H(2)CCC), a reactive carbene of interest to combustion processes and astrochemistry, has been studied by explicitly correlated coupled cluster theory at the CCSD(T)-F12x (x = a, b) level. Vibrational configuration interaction (VCI) has been employed to calculate accurate wavenumbers for the fundamental vibrations of H(2)CCC, D(2)CCC, and HDCCC. The symmetric CH stretching vibration of H(2)CCC is predicted to occur at ν(1) = 2984 cm(-1). Absorptions observed by argon matrix infrared spectroscopy at 3049.5 and 3059.6 cm(-1) are reassigned to the combination tone ν(2) + ν(4), which interacts with ν(1) and is predicted to have a higher intensity than the latter. Furthermore, IR bands detected at 865.4 and 868.8 cm(-1) are assigned to ν(6)(HDCCC), and those observed at 904.0 and 909.8 cm(-1) are assigned to the out-of-plane bending vibration ν(8)(HDCCC). An accurate value of 79.8 +/- 0.2 kJ mol(-1) is recommended for the zero-point vibrational energy of H(2)CCC.

18.
J Phys Chem A ; 114(14): 4875-80, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20088556

RESUMO

Explicitly correlated coupled cluster theory at the CCSD(T)-F12a level (Adler, T. B.; Knizia, G.; Werner, H.-J. J. Chem. Phys. 2007, 127, 221106) was employed to study the energetics of reactions of interstellar anions C(2n)H(-) with HCCH, which may formally be regarded as proton-transfer reactions. The gas-phase acidities at 0 K for the polyynes HC(2n)H with n = 2-4 are predicted to be 1516.5, 1483.2, and 1462.6 kJ mol(-1). The energy profiles of the collinear reactions are characterized by absolute minima corresponding to the hydrogen-bonded species HC(2n)(-)...HCCH, saddle points at which the proton is shared between the two anion moieties, and a second minimum in the exit channel of the reaction, which becomes less pronounced with increasing n.

19.
J Phys Chem A ; 113(43): 11772-82, 2009 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-19848427

RESUMO

Ab initio calculations employing the coupled cluster method CCSD(T), in conjunction with a small-core pseudopotential for the cadmium atom, have been employed to construct a near-equilibrium potential energy function (PEF) and an electric dipole moment function (EDMF) for CdH(2). The significance of the spin-orbit interaction was checked and found to be of minor importance. Making use of two pieces of experimental information for the most abundant isotopomer (114)CdH(2), we obtained a refined PEF, which, within variational calculations of rovibrational states and wave functions, reproduces all available experimental data (S. Yu, A.Shayesteh, and P. F. Bernath, J. Chem. Phys. 2005, 122, 194301) very well. In addition, numerous predictions are made. In particular, the nu(2) band origins for (114)CdH(2) and (114)CdD(2) are predicted at 605.9 and 436.9 cm(-1), respectively, and the state perturbing the e parity levels of the (0,0(0),1) state of (114)CdH(2) at J = 12-17 is identified as the (0,3(3),0) state. Assignments for further perturbations found in the emission spectra are given as well.

20.
J Chem Phys ; 129(4): 044305, 2008 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-18681644

RESUMO

Linear anions of type C(2n+1)N(-) (n=2-6), which are expected to be good candidates for experimental investigation by microwave spectroscopy and radio astronomy, were studied by means of the coupled cluster variant CCSD(T). Making use of corrections taken over from HC(3)NC(3)N(-) and HC(5)N, accurate equilibrium structures ( approximately 0.0005 A accuracy in bond lengths) have been established for all five anions. The electric dipole moments increase strongly with increasing chain length. For C(13)N(-), a very large equilibrium dipole moment of 16.53 D (with respect to center-of-mass coordinate system, negative end of dipole at terminal carbon site) is predicted. The lowest vertical detachment energies, leading to (2)Sigma states of the radicals for C(3)N(-) and C(5)N(-) and to (2)Pi states in the case of the larger anions, are calculated to lie in the range of 4.40-4.63 eV. The ground-state rotational and quartic centrifugal distortion constants of C(5)N(-) are predicted to be 1389.4 MHz and 33.8 Hz, respectively. All anions studied appear to be fairly normal semirigid linear molecules. Throughout, good agreement with available matrix isolation IR spectroscopic data is obtained and many predictions of spectroscopic properties are made.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...