Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 117(33): 7887-903, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23875994

RESUMO

Small organic compounds are increasingly being invoked as important players in atmospheric processes that occur on aerosol surfaces. The diacid succinic acid is one such constituent that is prevalent in the troposphere, surface active, and also water-soluble. This article presents a thorough examination of the surface characteristics of succinic acid at the vapor/water interface using a combination of theoretical simulation and experiments using vibrational sum frequency spectroscopy and surface tension. The adsorption and orientation of succinic acid at the water surface is characterized for a series of aqueous solution compositions relevant to atmospheric conditions. Fully protonated succinic acid is found to be particularly surface active. A new computational technique is introduced that provides a detailed picture of the different surface species that are contributing to the experimentally derived spectroscopic measurements. Additional results are presented for how SO2, a copollutant of succinic acid in the atmosphere, behaves at a water surface in the presence of surface adsorbed succinic acid.

2.
J Phys Chem A ; 117(12): 2529-42, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23384061

RESUMO

The presence of organic materials adsorbed to the surfaces of aerosol particles has been demonstrated to be a determining factor in relevant atmospheric processes. Malonic acid is a small, water-soluble organic acid that is common in aerosols and is surface-active. A comprehensive investigation of the adsorption of malonic acid to the air/water interface was accomplished using vibrational sum frequency spectroscopy (VSFS) and surface tension measurements as functions of concentration and pH. Malonic acid was found to be weakly solvated at the air/water interface, and its orientation as a function of concentration was explored through different VSFS polarization schemes. pH-dependent experiments revealed that the surface-active species is the fully protonated species. Computational analyses were used to obtain depth-specific geometries of malonic acid at the air/water interface that confirm and enrich the experimental results.

3.
J Am Chem Soc ; 134(24): 9967-77, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22616613

RESUMO

Aqueous surfaces act as a gateway to absorption and aqueous-phase reaction of gases in the atmosphere. The composition of aerosols varies greatly and is expected to influence the structure of the interface. For example, aldehydes comprise a significant fraction of atmospheric organics and are likely to accumulate at aqueous surfaces. But it is difficult to anticipate their effect on the migration of gaseous species through the interfacial region. Surface organics may act as a barrier to absorption, or they may facilitate uptake via cooperative interactions with absorbing compounds. The surface spectroscopic studies presented here examine the nature of the vapor/water interface during uptake of SO(2) to aqueous formaldehyde solutions, elucidating the role of surface species in a multicomponent interfacial system. The results show that the product of the reaction between SO(2) and formaldehyde, hydroxymethanesulfonate, shows a surface affinity that is enhanced in the presence of SO(2).

4.
J Am Chem Soc ; 133(19): 7497-508, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21520889

RESUMO

SO(2), an important atmospheric pollutant, has been implicated in environmental phenomena such as acid rain, climate change, and cloud formation. In addition, SO(2) is fundamentally interesting because it forms spectroscopically identifiable complexes with water at aqueous surfaces. Vibrational sum frequency spectroscopy (VSFS) is used here to further investigate the mechanism by which SO(2) adsorbs to water at tropospherically relevant temperatures (0-23 °C). The spectral results lead to two important conclusions. SO(2) surface affinity is enhanced at colder temperatures, with nearly all of the topmost water molecules showing evidence of binding to SO(2) at 0 °C as compared to a much lower fraction at room temperature. This surface adsorption results in significant changes in water orientation at the surface, but is reversible at the temperatures examined here. Second, the SO(2) complex formation at aqueous surfaces is independent of aqueous solution acidity. One challenge in previous uptake studies was the ability to distinguish between the effects of surface adsorption as compared to bulk accommodation. The surface and vibrational specificity of these studies make this distinction possible, allowing a selective study of how the aqueous properties temperature and pH influence SO(2) surface affinity.

5.
J Am Chem Soc ; 128(45): 14519-27, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17090035

RESUMO

Measuring the molecular properties of the surface of acidic and basic aqueous solutions is essential to understanding a wide range of important biological, chemical, and environmental processes on our planet. In the present studies, vibrational sum-frequency spectroscopy (VSFS) is employed in combination with isotopic dilution experiments at the vapor/water interface to elucidate the interfacial water structure as the pH is varied with HCl and NaOH. In acidic solutions, solvated proton species are seen throughout the interfacial region, and they alter the hydrogen bonding between water molecules in ways that reflect their depth in the interfacial region. At the higher frequencies of the OH stretch region, there is spectral evidence for solvated proton species residing in the topmost layers of the interfacial region. As reported in previous VSF studies, more strongly bound solvated proton species are observed at lower OH stretching frequencies. The solvated proton species that have stronger hydrogen bonding are similar in structure to those found in bulk acid solutions and likely reside somewhat deeper in the interfacial region. There is also evidence of OH stretching from solvated protons and relatively strong hydrogen bonding in the solvation sphere that is similar to other solvated ions. In contrast, water molecules solvating OH(-) ions show relatively weak hydrogen bonding and significantly less interfacial order. VSF spectra are acquired under multiple polarizations to provide crucial information for the interpretation of the spectra and for the determination of interfacial structure.


Assuntos
Hidrogênio/química , Hidróxidos/química , Análise Espectral/métodos , Concentração de Íons de Hidrogênio , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...