Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1218(20): 2880-6, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21429494

RESUMO

In our previous studies, we employed recycle HPLC for the separation of triacylglycerol (TAG)-positional isomers (PIs). In this study, a recycle HPLC system equipped with a polysaccharide-based chiral column was applied to the enantiomeric separation of some asymmetric TAGs having straight-chain C16-C18 acyl residues. As a result, 1,2-dipalmitoyl-3-oleoyl-rac-glycerol (rac-PPO), 1,2-dioleoyl-3-palmitoyl-rac-glycerol (rac-OOP), and 1,2-dipalmitoyl-3-linoleoyl-rac-glycerol (rac-PPL) were resolved into their respective enantiomers. However, neither 1,2-dioleoyl-3-linoleoyl-rac-glycerol (rac-OOL), consisting of only unsaturated fatty acids, nor 1,2-dipalmitoyl-3-stearoyl-rac-glycerol (rac-PPS), consisting of only saturated fatty acids, was resolved. These results suggest that the asymmetric TAGs, used in this study, having both a palmitic acid moiety and an oleic acid (or a linoleic acid) moiety at the sn-1 or sn-3 positions are resolved by the chiral column. This new chiral separation method can be used in combination with atmospheric pressure chemical ionization mass spectrometry to determine the sn-OOP/sn-POO ratio in palm oil. This method is applicable for the chiral separation of asymmetric TAGs in palm oil.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Triglicerídeos/isolamento & purificação , Celulose/análogos & derivados , Celulose/química , Cromatografia Líquida de Alta Pressão/instrumentação , Reutilização de Equipamento , Fenilcarbamatos/química , Estereoisomerismo , Triglicerídeos/química
2.
Food Chem ; 127(2): 467-72, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23140688

RESUMO

The distribution of fatty acid species at the (sn-1, 3) position or the (sn-2) position of triacylglycerol (TAG) in natural fats and oils has already been analysed by many researchers and several interesting results have been reported. However, most of these reports only focused on the distribution of fatty acids at the or positions in TAG, and did not take account of the combination of fatty acids in the TAG, i.e., the TAG positional isomers. In this study, the actual ratios of TAG positional isomer pairs, consisting of palmitic acid and highly unsaturated fatty acid (HUFA) such as DHA or EPA, in fish and marine mammals were investigated using a high-performance liquid chromatography/atmospheric pressure chemical ionisation-mass spectrometry (HPLC/APCI-MS) system equipped with tandem jointed non-endcapped polymeric ODS columns. The results show that for combinations of DHA or EPA with two palmitic acids in the TAG of marine mammals, binding was almost all at the α position. In contrast, binding of DHA or EPA was mainly at the ß position in fish. The preferred DHA and EPA positions in TAG were the same in the same marine mammal or fish. The binding position tendency of HUFA in TAG positional isomers consisting of two HUFAs and one palmitic acid was the same as that for combinations of one HUFA and two palmitic acids. These results were interpreted as showing that the preferred fatty acid species of sn-glycerol-3-phosphate acyltransferase and 1-acyl-sn-glycerol-3-phosphate acyltransferase in marine mammals are different to those in fish and other animals, or that diacylglycerol acyltransferase in marine mammals favours 1,2-dipalmitoyl-sn-glycerol formed from 1,2-dipalmitoyl-sn-glycerol-3-phosphatidate if HUFA is the reaction substrate.

3.
J Oleo Sci ; 59(12): 631-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21099140

RESUMO

Now it is recognized that DHA is oxidatively stable fatty acid compared with linoleic acid (LA) in emulsified system, although DHA is oxidatively unstable in a bulk system. In fact, an emulsified mixture of DHA and LA behaves as in a bulk system, namely the oxidative stability of DHA becomes lower than that of LA. Therefore, in this study, tridocosahexaenoate (DDD) and glycerol trilinoleate (LLL) were separately emulsified using TritonX-100 as an emulsifier and DDD emulsion was mixed with the oxidizing LLL emulsion using a water-soluble radical initiator, 2,2'-azobis(2-aminopropane) dihydrochloride. As a result, DHA suppressed the oxidation of LA, while DHA was not significantly oxidized. This suppression ability was examined using glycerol trieicosapentaenoate, glycerol trilinolenate, or glycerol trioleate instead of DDD and it was found that this activity was increased with the increasing number of double bonds in the structure. Furthermore, the same type of experiment was carried out using a lipid-soluble radical initiator, 2,2'-azobisisobutyronitrile and the similar result was obtained. These results indicated that a highly polyunsaturated fatty acid might act as an antioxidant in an emulsion system oxidized by an azo compound.


Assuntos
Amidinas/química , Antioxidantes/química , Ácidos Docosa-Hexaenoicos/química , Triglicerídeos/química , Antioxidantes/isolamento & purificação , Ácidos Docosa-Hexaenoicos/isolamento & purificação , Emulsões , Ácido Linoleico/química , Octoxinol/química , Solubilidade , Triglicerídeos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...