Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1394093, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832131

RESUMO

Introduction: Biomechanical stimulation is reportedly pivotal in meniscal regeneration, although its effect on mesenchymal stem cell (MSC) meniscal differentiation remains elusive. In this study, we investigated how cyclic compressive loading (CCL) could impact MSCs using three-dimensional cultures in atelocollagen-based meniscal substitute (ACMS). Methods: We extracted MSCs from the meniscus, synovium, and articular cartilage, cultured them in three-dimensional cultures, and exposed them to CCL for 7 days. We then compared the transcriptomes of MSCs treated with and without CCL. Results: Our RNA-seq analysis revealed that CCL induced significant transcriptome changes, significantly affecting chondrocyte-related genes, including SOX9, TGFB1, and PRG4 upregulation. CCL induced transcriptional differentiation of meniscus progenitors toward mature meniscal cells. Conclusion: This study unveils the potential of mechanical stress in promoting MSC meniscal differentiation within ACMS. Our investigations provide new insights for mechanisms underlying meniscal regeneration with ACMS.

2.
Osteoarthritis Cartilage ; 31(12): 1581-1593, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37562758

RESUMO

OBJECTIVE: To investigate the efficacy of basic fibroblast growth factor (bFGF) in promoting meniscus regeneration by cultivating synovial mesenchymal stem cells (SMSCs) and to validate the underlying mechanisms. METHODS: Human SMSCs were collected from patients with osteoarthritis. Eight-week-old nude rats underwent hemi-meniscectomy, and SMSCs in pellet form, either with or without bFGF (1.0 × 106 cells per pellet), were implanted at the site of meniscus defects. Rats were divided into the control (no transplantation), FGF (-) (pellet without bFGF), and FGF (+) (pellet with bFGF) groups. Different examinations, including assessment of the regenerated meniscus area, histological scoring of the regenerated meniscus and cartilage, meniscus indentation test, and immunohistochemistry analysis, were performed at 4 and 8 weeks after surgery. RESULTS: Transplanted SMSCs adhered to the regenerative meniscus. Compared with the control group, the FGF (+) group had larger regenerated meniscus areas, superior histological scores of the meniscus and cartilage, and better meniscus mechanical properties. RNA sequencing of SMSCs revealed that the gene expression of chemokines that bind to CXCR2 was upregulated by bFGF. Furthermore, conditioned medium derived from SMSCs cultivated with bFGF exhibited enhanced cell migration, proliferation, and chondrogenic differentiation, which were specifically inhibited by CXCR2 or CXCL6 inhibitors. CONCLUSION: SMSCs cultured with bFGF promoted the expression of CXCL6. This mechanism may enhance cell migration, proliferation, and chondrogenic differentiation, thereby resulting in superior meniscus regeneration and cartilage preservation.


Assuntos
Menisco , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Ratos , Animais , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Membrana Sinovial , Células-Tronco Mesenquimais/metabolismo , Regeneração , Diferenciação Celular , Células Cultivadas , Transplante de Células-Tronco Mesenquimais/métodos , Quimiocina CXCL6/metabolismo
3.
Sci Rep ; 12(1): 11977, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831482

RESUMO

Meniscal degeneration is defined by semi-quantitative assessment of multiple histological findings and has been implicated in biomechanical dysfunction, yet little is known about its relationship with biological properties. This paper aimed to quantitatively evaluate degenerative findings in human meniscus to examine their relationship with gene expression and biomechanical properties, and to extract histological findings that reflect biological properties like gene expression and cytokine secretion. This study included lateral menisci of 29 patients who underwent total knee arthroplasty. The menisci were divided into six samples. For each sample, Pauli's histological evaluation and corresponding quantitative assessment (surface roughness, DNA content, collagen orientation, and GAG content) were performed, with surface roughness showing the highest correlation with the histological evaluation in a single correlation analysis (r = 0.66, p < 0.0001) and multivariate analysis (p < 0.0001). Furthermore, surface roughness was associated with gene expression related to meniscal degeneration and with tangent modulus which decreases with increasing degeneration (r = - 0.49, p = 0.0002). When meniscal tissue was classified by surface integrity, inflammatory cytokine secretion tended to be higher in severe degenerated menisci. These results suggest that the evaluation of meniscal surface texture could predict the degree of degeneration and inflammatory cytokine secretion.


Assuntos
Menisco , Lesões do Menisco Tibial , Colágeno , Citocinas , Humanos , Meniscos Tibiais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...