Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Heliyon ; 10(17): e37243, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39286227

RESUMO

Snake envenomation poses a significant risk to Malaysians and country visitors. Malaysia witnesses an estimated 650 snake bites per 100,000 population annually. The primary treatment for snake envenomation involves administering antivenom derived from horses, despite its drawbacks, such as anaphylactic reactions and serum sickness. Identifying the venom proteome is crucial for understanding and predicting the clinical implications of envenomation and developing effective treatments targeting specific venom proteins. In this study, we employ an immunoprecipitation assay followed by LC-MS/MS to identify antigenic proteins in five common venomous snakes in Malaysia compassing of two families which are pit vipers, (Calloselasma rhodostoma and Cryptelytrops purpureomaculatus) and cobras (Ophiophagus hannah, Naja kaouthia, and Naja sumatrana). The immunoprecipitation assay utilises a 2 % agarose gel, allowing antigenic proteins to diffuse and bind with antibodies in the antivenom. The antivenom utilised in this research was procured from the Queen Saovabha Memorial Institute (QSMI), Thailand, including king cobra antivenom (KCAV), cobra antivenom (CAV), Malayan pit viper antivenom (MPAV), Russell's viper antivenom (RPAV), hematopolyvalent antivenom (HPAV), neuropolyvalent antivenom (NPAV), banded krait antivenom (BKAV), and Malayan krait antivenom (MKAV). The protein identified through these interactions which are exclusive to the cobras are three-finger toxins (3FTXs) while snake C-type lectins (Snaclecs) are unique to the pit vipers. Common protein that are present in both families are L-amino acid oxidase (LAAO), Phospholipase A2 (PLA2), and snake venom metalloproteinase (SVMP). Identifying these proteins is vital for formulating a broad-spectrum antivenom applicable across multiple species.

2.
F1000Res ; 13: 225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919947

RESUMO

Epilepsy affects millions of people worldwide, and there is an urgent need to develop safe and effective therapeutic agents. Animal venoms contain diverse bioactive compounds like proteins, peptides, and small molecules, which may possess medicinal properties against epilepsy. In recent years, research has shown that venoms from various organisms such as spiders, ants, bees, wasps, and conus snails have anticonvulsant and antiepileptic effects by targeting specific receptors and ion channels. This review underscores the significance of purified proteins and toxins from these sources as potential therapeutic agents for epilepsy. In conclusion, this review emphasizes the valuable role of animal venoms as a natural resource for further exploration in epilepsy treatment research.


Assuntos
Anticonvulsivantes , Peçonhas , Animais , Anticonvulsivantes/farmacologia , Humanos , Peçonhas/uso terapêutico , Peçonhas/farmacologia , Peçonhas/química , Epilepsia/tratamento farmacológico
3.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542474

RESUMO

Diarylpentanoids are synthesized to overcome curcumin's poor bioavailability and low stability to show enhanced anti-cancer effects. Little is known about the anti-cancer effects of diarylpentanoid MS17 (1,5-bis(2-hydroxyphenyl)-1,4-pentadiene-3-one) in colon cancer cells. This study aimed to elucidate molecular mechanisms and pathways modulated by MS17 in colon cancer based on proteomic profiling of primary SW480 and metastatic SW620 colon cancer cells. Cytotoxicity and apoptotic effects of MS17 were investigated using MTT assay, morphological studies, and Simple Western analysis. Proteomic profiling using LC/MS analysis identified differentially expressed proteins (DEPs) in MS17-treated cells, with further analysis in protein classification, gene ontology enrichment, protein-protein interaction network and Reactome pathway analysis. MS17 had lower EC50 values (SW480: 4.10 µM; SW620: 2.50 µM) than curcumin (SW480: 17.50 µM; SW620: 13.10 µM) with a greater anti-proliferative effect. MS17 treatment of 1× EC50 induced apoptotic changes in the morphology of SW480 and SW620 cells upon 24 h treatment. A total of 24 and 92 DEPs (fold change ≥ 1.50) were identified in SW480 and SW620 cells, respectively, upon MS17 treatment of 2× EC50 for 24 h. Pathway analysis showed that MS17 may induce its anti-cancer effects in both cells via selected DEPs associated with the top enriched molecular pathways. RPL and RPS ribosomal proteins, heat shock proteins (HSPs) and ubiquitin-protein ligases (UBB and UBC) were significantly associated with cellular responses to stress in SW480 and SW620 cells. Our findings suggest that MS17 may facilitate the anti-proliferative and apoptotic activities in primary (SW480) and metastatic (SW620) human colon cancer cells via the cellular responses to stress pathway. Further investigation is essential to determine the alternative apoptotic mechanisms of MS17 that are independent of caspase-3 activity and Bcl-2 protein expression in these cells. MS17 could be a potential anti-cancer agent in primary and metastatic colon cancer cells.


Assuntos
Alcadienos , Neoplasias do Colo , Curcumina , Humanos , Curcumina/farmacologia , Proteômica , Apoptose , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo
4.
Life (Basel) ; 13(5)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37240778

RESUMO

Morocco is known to harbor two of the world's most dangerous scorpion species: the black Androctonus mauritanicus (Am) and the yellow Buthus occitanus (Bo), responsible for 83% and 14% of severe envenomation cases, respectively. Scorpion venom is a mixture of biological molecules of variable structures and activities, most of which are proteins of low molecular weights referred to as toxins. In addition to toxins, scorpion venoms also contain biogenic amines, polyamines, and enzymes. With the aim of investigating the composition of the Am and Bo venoms, we conducted an analysis of the venoms by mass spectrometry (ESI-MS) after separation by reversed-phase HPLC chromatography. Results from a total of 19 fractions obtained for the Am venom versus 22 fractions for the Bo venom allowed the identification of approximately 410 and 252 molecular masses, respectively. In both venoms, the most abundant toxins were found to range between 2-5 kDa and 6-8 kDa. This proteomic analysis not only allowed the drawing of an extensive mass fingerprint of the Androctonus mauritanicus and Buthus occitanus venoms but also provided a better insight into the nature of their toxins.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37100105

RESUMO

Globally around 24 million elderly population are dealing with dementia, and this pathological characteristic is commonly seen in people suffering from Alzheimer's disease (AD). Despite having multiple treatment options that can mitigate AD symptoms, there is an imperative call to advance our understanding of the disease pathogenesis to unfold disease-modifying treatments/therapies. To explore the driving mechanisms of AD development, we stretch out further to study time-dependant changes after Okadaic acid (OKA)-induced AD-like conditions in zebrafish. We evaluated the pharmacodynamics of OKA at two-time points, i.e., after 4-days and 10-days exposure to zebrafish. T-Maze was utilized to observe the learning and cognitive behaviour, and inflammatory gene expressions such as 5-Lox, Gfap, Actin, APP, and Mapt were performed in zebrafish brains. To scoop everything out from the brain tissue, protein profiling was performed using LCMS/MS. Both time course OKA-induced AD models have shown significant memory impairment, as evident from T-Maze. Gene expression studies of both groups have reported an overexpression of 5-Lox, GFAP, Actin, APP, and OKA 10D group has shown remarkable upregulation of Mapt in zebrafish brains. In the case of protein expression, the heatmap suggested an important role of some common proteins identified in both groups, which can be explored further to investigate their mechanism in OKA-induced AD pathology. Presently, the preclinical models available to understand AD-like conditions are not completely understood. Hence, utilizing OKA in the zebrafish model can be of great importance in understanding the pathology of AD progression and as a screening tool for drug discovery.


Assuntos
Doença de Alzheimer , Idoso , Animais , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peixe-Zebra/metabolismo , Proteômica , Actinas/metabolismo , Encéfalo/metabolismo , Ácido Okadáico/efeitos adversos , Ácido Okadáico/metabolismo , Genômica , Modelos Animais de Doenças
6.
Curr Res Neurobiol ; 3: 100032, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518345

RESUMO

Embelin is a neuroprotective compound with therapeutic benefit against experimental Alzheimer's disease (AD)-like condition. In the quest of untangling the underlying mechanism behind the neuroprotective effect of Embelin in AD, an in-vitro study of Embelin against neuronal damage induced by Streptozotocin (STZ) in rat hippocampal neuronal culture was performed. Current findings demonstrated that Embelin (2.5-10 µM) has efficiently protected hippocampal neurons against STZ (8 mM)-induced neurotoxicity. An increase in amyloid precursor protein (APP), microtubule-associated protein tau (MAPT), glycogen synthase kinase 3 alpha (GSK-3α) and glycogen synthase kinase 3 beta (GSK-3ß) expression levels was observed when STZ (8 mM) stimulation was done for 24 h in the hippocampal neurons. A significant downregulation in the mRNA expression levels of APP, MAPT, GSK-3α, and GSK-3ß upon pre-treatment with different doses of Embelin (2.5 µM, 5 µM and 10 µM) reflects that Embelin attenuated STZ-induced dysfunction of insulin signaling (IR). Embelin significantly modulated the mRNA expression of scavenger enzyme Superoxide dismutase (SOD1). Furthermore, STZ had significantly upregulates an expression of Aß. On the contrary, pre-treatment with three doses of Embelin reversed an Aß-induced neuronal death. Our findings suggest that, Embelin prevents Aß accumulation via SOD1 pathway to protect against AD-like condition.

7.
PLoS Negl Trop Dis ; 16(11): e0010915, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36383562

RESUMO

BACKGROUND: Despite domestic production of antivenoms in the Association of Southeast Asian Nations (ASEAN) countries, not all victims with snakebite envenomings indicated for antivenom received the appropriate or adequate effective dose of antivenom due to insufficient supply and inadequate access to antivenoms. We aimed to conduct a cost-effectiveness analysis to project the potential economic and clinical impact of improving access to antivenoms when all snakebite envenomings in ASEAN countries were hypothetically treated with geographically appropriate antivenoms. METHODOLOGY: Using a decision analytic model with input parameters from published literature, local data, and expert opinion, we projected the impact of "full access" (100%) to antivenom, compared to "current access" in five most impacted ASEAN countries, including Indonesia (10%), Philippines (26%), Vietnam (37%), Lao PDR (4%), and Myanmar (64%), from a societal perspective with a lifetime time horizon. Sensitivity analyses were performed. PRINCIPAL FINDINGS: In base-case analyses, full access compared to current access to snake antivenom in the five countries resulted in a total of 9,362 deaths averted (-59%), 230,075 disability-adjusted life years (DALYs) averted (-59%), and cost savings of 1.3 billion USD (-53%). Incremental cost-effectiveness ratios (ICERs) of improving access to antivenom found higher outcomes but lower costs in all countries. Probabilistic sensitivity analyses of 1,000 iterations found that 98.1-100% of ICERs were cost-saving. CONCLUSION/SIGNIFICANCE: Improving access to snake antivenom will result in cost-saving for ASEAN countries. Our findings emphasized the importance of further strengthening regional cooperation, investment, and funding to improve the situation of snakebite victims in ASEAN countries.


Assuntos
Antivenenos , Mordeduras de Serpentes , Animais , Antivenenos/uso terapêutico , Mordeduras de Serpentes/tratamento farmacológico , Análise Custo-Benefício , Serpentes , Ásia
8.
Front Pharmacol ; 13: 935418, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313292

RESUMO

Oxidative stress is one of the factors involved in the pathogenesis of several neurodegenerative diseases. It has been reported that a secretory phospholipase A2 known as A2-EPTX-NSm1a has lower cytotoxicity in neuronal cells compared to its crude Naja sumatrana venom. In this study, A2-EPTX-NSm1a was tested for its neuroprotective activity on human neuroblastoma cells (SH-SY5Y) differentiated into cholinergic neurons against oxidative stress induced by hydrogen peroxide (H2O2). H2O2 treatment alone increased the caspase-3 and caspase-8 activities, whereas pre-treatment with A2-EPTX-NSm1a reduced the activity of these apoptosis-associated proteins. Moreover, A2-EPTX-NSm1a protects the morphology and ultrastructure of differentiated SH-SY5Y cells in the presence of H2O2. Oxidative stress increased the number of small mitochondria. Further evaluation showed the size of mitochondria with a length below 0.25 µm in oxidative stress conditions is higher than the control group, suggesting mitochondria fragmentation. Pre-treatment with A2-EPTX-NSm1a attenuated the number of mitochondria in cells with H2O2 Furthermore, A2-EPTX-NSm1a altered the expression of several neuroprotein biomarkers of GDNF, IL-8, MCP-1, TIMP-1, and TNF-R1 in cells under oxidative stress induced by H2O2. These findings indicate that anti-apoptosis with mitochondria-related protection, anti-inflammatory effect, and promote expression of important markers for cell survival may underlie the neuroprotective effect of A2-EPTX-NSm1a in cholinergic rich human cells under oxidative stress, a vital role in the neuronal disorder.

9.
PLoS One ; 17(9): e0274488, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36094937

RESUMO

Naja sumatrana and Naja kaouthia are medically important elapids species found in Southeast Asia. Snake bite envenoming caused by these species may lead to morbidity or mortality if not treated with the appropriate antivenom. In this study, the in vitro neurotoxic and myotoxic effects N. sumatrana and N. kaouthia venoms from Malaysian specimens were assessed and compared. In addition, the neutralizing capability of Cobra Antivenom (CAV), King Cobra Antivenom (KCAV) and Neuro Polyvalent Antivenom (NPAV) from Thailand were compared. Both venoms produced concentration-dependent neurotoxic and myotoxic effects in the chick biventer cervicis nerve-muscle preparation. Based on the time to cause 90% inhibition of twitches (i.e. t90) N. kaouthia venom displayed more potent neurotoxic and myotoxic effects than N. sumatrana venom. All three of the antivenoms significantly attenuated venom-induced twitch reduction of indirectly stimulated tissues when added prior to venom. When added after N. sumatrana venom, at the t90 time point, CAV and NPAV partially restored the twitch height but has no significant effect on the reduction in twitch height caused by N. kaouthia venom. The addition of KCAV, at the t90 time point, did not reverse the attenuation of indirectly stimulated twitches caused by either venom. In addition, none of the antivenoms, when added prior to venom, prevented attenuation of directly stimulated twitches. Differences in the capability of antivenoms, especially NPAV and CAV, to reverse neurotoxicity and myotoxicity indicate that there is a need to isolate and characterize neurotoxins and myotoxins from Malaysian N. kaouthia and N. sumatrana venoms to improve neutralization capability of the antivenoms.


Assuntos
Antivenenos , Síndromes Neurotóxicas , Animais , Antivenenos/farmacologia , Miotoxicidade , Naja , Naja naja , Neurotoxinas/toxicidade , Tailândia
10.
PLoS Negl Trop Dis ; 16(9): e0010775, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36170270

RESUMO

BACKGROUND: Understanding the burden of snakebite is crucial for developing evidence-informed strategies to pursue the goal set by the World Health Organization to halve morbidity and mortality of snakebite by 2030. However, there was no such information in the Association of Southeast Asian Nations (ASEAN) countries. METHODOLOGY: A decision analytic model was developed to estimate annual burden of snakebite in seven countries, including Malaysia, Thailand, Indonesia, Philippines, Vietnam, Lao PDR, and Myanmar. Country-specific input parameters were sought from published literature, country's Ministry of Health, local data, and expert opinion. Economic burden was estimated from the societal perspective. Costs were expressed in 2019 US Dollars (USD). Disease burden was estimated as disability-adjusted life years (DALYs). Probabilistic sensitivity analysis was performed to estimate a 95% credible interval (CrI). PRINCIPAL FINDINGS: We estimated that annually there were 242,648 snakebite victims (95%CrI 209,810-291,023) of which 15,909 (95%CrI 7,592-33,949) were dead and 954 (95%CrI 383-1,797) were amputated. We estimated that 161,835 snakebite victims (69% of victims who were indicated for antivenom treatment) were not treated with antivenom. Annual disease burden of snakebite was estimated at 391,979 DALYs (95%CrI 187,261-836,559 DALYs) with total costs of 2.5 billion USD (95%CrI 1.2-5.4 billion USD) that were equivalent to 0.09% (95%CrI 0.04-0.20%) of the region's gross domestic product. >95% of the estimated burdens were attributed to premature deaths. CONCLUSION/SIGNIFICANCE: The estimated high burden of snakebite in ASEAN was demonstrated despite the availability of domestically produced antivenoms. Most burdens were attributed to premature deaths from snakebite envenoming which suggested that the remarkably high burden of snakebite could be averted. We emphasized the importance of funding research to perform a comprehensive data collection on epidemiological and economic burden of snakebite to eventually reveal the true burden of snakebite in ASEAN and inform development of strategies to tackle the problem of snakebite.


Assuntos
Mordeduras de Serpentes , Antivenenos/uso terapêutico , Sudeste Asiático/epidemiologia , Efeitos Psicossociais da Doença , Humanos , Mordeduras de Serpentes/epidemiologia , Mordeduras de Serpentes/terapia , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA