Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 21(1): 258, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37957664

RESUMO

BACKGROUND: Mutualistic interactions, which constitute some of the most advantageous interactions among fish species, are highly vulnerable to environmental changes. A key mutualistic interaction is the cleaning service rendered by the cleaner wrasse, Labroides dimidiatus, which involves intricate processes of social behaviour to remove ectoparasites from client fish and can be altered in near-future environmental conditions. Here, we evaluated the neuromolecular mechanisms behind the behavioural disruption of cleaning interactions in response to future environments. We subjected cleaner wrasses and surgeonfish (Acanthurus leucosternon, serving as clients) to elevated temperature (warming, 32 °C), increased levels of CO2 (high CO2, 1000 ppm), and a combined condition of elevated CO2 and temperature (warming and high CO2, 32 °C, and 1000 ppm) for 28 days. RESULTS: Each of these conditions resulted in behavioural disruptions concerning the motivation to interact and the quality of interaction (high CO2 - 80.7%, warming - 92.6%, warming and high CO2 - 79.5%, p < 0.001). Using transcriptomics of the fore-, mid-, and hindbrain, we discovered that most transcriptional reprogramming in both species under warming conditions occurred primarily in the hind- and forebrain. The associated functions under warming were linked to stress, heat shock proteins, hypoxia, and behaviour. In contrast, elevated CO2 exposure affected a range of functions associated with GABA, behaviour, visual perception, thyroid hormones and circadian rhythm. Interestingly, in the combined warming and high CO2 condition, we did not observe any expression changes of behaviour. However, we did find signs of endoplasmic reticulum stress and apoptosis, suggesting not only an additive effect of the environmental conditions but also a trade-off between physiological performance and behaviour in the cleaner wrasse. CONCLUSIONS: We show that impending environmental shifts can affect the behaviour and molecular processes that sustain mutualistic interactions between L. dimidiatus and its clients, which could have a cascading effect on their adaptation potential and possibly cause large-scale impacts on coral reef ecosystems.


Assuntos
Ecossistema , Perciformes , Humanos , Animais , Dióxido de Carbono , Peixes/fisiologia , Perciformes/fisiologia , Recifes de Corais , Simbiose
2.
Sci Rep ; 12(1): 8468, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589869

RESUMO

Coral reef fish exhibit a large variety of behaviours crucial for fitness and survival. The cleaner wrasse Labroides dimidiatus displays cognitive abilities during interspecific interactions by providing services of ectoparasite cleaning, thus serving as a good example to understand the processes of complex social behaviour. However, little is known about the molecular underpinnings of cooperative behaviour between L. dimidiatus and a potential client fish (Acanthurus leucosternon). Therefore, we investigated the molecular mechanisms in three regions of the brain (Fore-, Mid-, and Hindbrain) during the interaction of these fishes. Here we show, using transcriptomics, that most of the transcriptional response in both species was regulated in the Hindbrain and Forebrain regions and that the interacting behaviour responses of L. dimidiatus involved immediate early gene alteration, dopaminergic and glutamatergic pathways, the expression of neurohormones (such as isotocin) and steroids (e.g. progesterone and estrogen). In contrast, in the client, fewer molecular alterations were found, mostly involving pituitary hormone responses. The particular pathways found suggested synaptic plasticity, learning and memory processes in the cleaner wrasse, while the client indicated stress relief.


Assuntos
Peixes , Perciformes , Animais , Recifes de Corais , Peixes/genética , Perciformes/fisiologia , Prosencéfalo , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...