Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36829753

RESUMO

Mobile radiography allows for the diagnostic imaging of patients who cannot move to the X-ray examination room. Therefore, mobile X-ray equipment is useful for patients who have difficulty with movement. However, staff are exposed to scattered radiation from the patient, and they can receive potentially harmful radiation doses during radiography. We estimated occupational exposure during mobile radiography using phantom measurements. Scattered radiation distribution during mobile radiography was investigated using a radiation survey meter. The efficacy of radiation-reducing methods for mobile radiography was also evaluated. The dose decreased as the distance from the X-ray center increased. When the distance was more than 150 cm, the dose decreased to less than 1 µSv. It is extremely important for radiological technologists (RTs) to maintain a sufficient distance from the patient to reduce radiation exposure. The spatial dose at eye-lens height increases when the bed height is high, and when the RT is short in stature and abdominal imaging is performed. Maintaining sufficient distance from the patient is also particularly effective in limiting radiation exposure of the eye lens. Our results suggest that the doses of radiation received by staff during mobile radiography are not significant when appropriate radiation protection is used. To reduce exposure, it is important to maintain a sufficient distance from the patient. Therefore, RTs should bear this is mind during mobile radiography.

2.
J Radiat Res ; 62(3): 414-419, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33839782

RESUMO

The new recommendation of the International Commission on Radiological Protection for occupational eye dose is an equivalent dose limit to the eye of 20 mSv year-1, averaged over a 5-year period. This recommendation is a drastic reduction from the previous limit of 150 mSv year-1. Hence, it is important to protect physicians' eyes from X-ray radiation. Particularly in interventional radiology (IVR) procedures, many physicians use protective lead (Pb) glasses to reduce their occupational exposure. This study assessed the shielding effects of novel 0.07 mm Pb glasses. The novel glasses (XR-700) have Pb-acrylic lens molded in three dimensions. We studied the novel type of 0.07 mm Pb glasses over a period of seven consecutive months. The eye dose occupational radiation exposure of seven IVR physicians was evaluated during various procedures. All IVR physicians wore eye dosimeters (DOSIRIS™) close to the left side of the left eye. To calculate the shielding effects of the glasses, this same type of eye dosimeter was worn both inside and outside of the Pb lenses. The average shielding effect of the novel glasses across the seven physicians was 61.4%. Our results suggest an improved shielding effect for IVR physicians that use these glasses. No physician complained that the new glasses were uncomfortable; therefore comfort is not a problem. The lightweight glasses were acceptable to IVR physicians, who often must perform long procedures. Thus, the novel glasses are comfortable and reasonably protective. Based on the results of this study, we recommend that IVR physicians use these novel 0.07 mm Pb glasses to reduce their exposure.


Assuntos
Dispositivos de Proteção dos Olhos , Médicos , Proteção Radiológica , Radiologia Intervencionista , Relação Dose-Resposta à Radiação , Óculos , Humanos , Cristalino/efeitos da radiação , Raios X
3.
Radiol Phys Technol ; 13(3): 321-326, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32715378

RESUMO

Radiation exposure during interventional radiology (IR) procedures is a critical issue. We have developed a wireless real-time dosimeter for IR patients that use nontoxic phosphor (four sensors). We evaluated the basic performance parameters (such as dose linearity, batch uniformity, reproducibility, and wireless-communication conditions) of the developed system using an IR X-ray system. Further, we investigated the influence of noise from other medical equipment on our wireless real-time dosimeter in the IR X-ray room. Overall, our wireless system exhibited excellent performance in terms of uniformity, reproducibility, and linearity; moreover, the wireless communication performance was better. The developed system enabled real-time visualization of patient radiation dose, without noise contamination from other medical equipment. In addition, the wireless system can be easily installed in a location where the PC screen (display) can be readily viewed by the IR physician. Hence, we developed a wireless system that can display the patient radiation dose data in real time; the system performed satisfactorily upon application in radiation dosimetry. Therefore, our wireless system will facilitate the real-time monitoring/management of patient radiation dose during IR.


Assuntos
Radiologia Intervencionista/instrumentação , Radiometria/instrumentação , Tecnologia sem Fio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...