Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Am Nat ; 201(2): 200-214, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36724468

RESUMO

AbstractA subspecies of the yellow fever mosquito, Aedes aegypti, has recently evolved to specialize in biting and living alongside humans. It prefers human odor over the odor of nonhuman animals and breeds in human-provided artificial containers rather than the forest tree holes of its ancestors. Here, we report one way this human specialist has adapted to the distinct ecology of human environments. While eggs of the ancestral subspecies rarely hatch in pure water, those of the derived human specialist do so readily. We trace this novel behavior to a shift in how eggs respond to dissolved oxygen, low levels of which may signal food abundance. Moreover, we show that while tree holes are consistently low in dissolved oxygen, artificial containers often have much higher levels. There is thus a concordance between the hatching behavior of each subspecies and the aquatic habitat it uses in the wild. We find this behavioral variation is heritable, with both maternal and zygotic effects. The zygotic effect depends on dissolved oxygen concentration (i.e., a genotype-environment interaction, or G×E), pointing to potential changes in oxygen-sensitive circuits. Together, our results suggest that a shift in hatching response contributed to the pernicious success of this human-specialist mosquito and illustrate how animals may rapidly adapt to human-driven changes in the environment.


Assuntos
Aedes , Ecossistema , Humanos , Animais , Florestas , Árvores , Aedes/genética
2.
Trop Med Infect Dis ; 3(4)2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30274501

RESUMO

Ghana has been implementing mass drug administration (MDA) of ivermectin and albendazole for the elimination of lymphatic filariasis (LF) since the year 2000, as part of the Global Programme to Eliminate Lymphatic Filariasis (GPELF). It was estimated that 5⁻6 years of treatment would be sufficient to eliminate the disease. Tremendous progress has been made over the years, and treatment has stopped in many disease endemic districts. However, despite the successful implementation of MDA, there are districts with persistent transmission. In this study we assessed the epidemiology of LF in three adjoining districts that have received at least 16 years of MDA. The assessments were undertaken one year after the last MDA. 1234 adults and 182 children below the age of 10 years were assessed. The overall prevalence of circulating filarial antigen in the study participants was 8.3% (95% CI: 6.9⁻9.9), with an estimated microfilaria prevalence of 1.2%. The microfilarial intensity in positive individuals ranged from 1 to 57 microfilariae/mL of blood. Higher antigen prevalence was detected in males (13.0%; 95% CI: 10.3⁻16.2) compared to females (5.5%; 95% CI: 4.1⁻7.2). The presence of infection was also highest in individuals involved in outdoor commercial activities, with the risks of infection being four- to five-fold higher among farmers, fishermen, drivers and artisans, compared to all other occupations. Using bednets or participating in MDA did not significantly influence the risk of infection. No children below the age of 10 years were found with infection. Detection of Wb123 antibodies for current infections indicated a prevalence of 14.4% (95% CI: 8.1⁻23.0) in antigen-positive individuals above 10 years of age. No antibodies were detected in children 10 years or below. Assessment of infection within the An. gambiae vectors of LF indicated an infection rate of 0.9% (95% CI: 0.3⁻2.1) and infectivity rate of 0.5% (95% CI: 0.1⁻1.6). These results indicate low-level transmission within the districts, and suggest that it will require targeted interventions in order to eliminate the infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...