Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 10(21): 12611-12618, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35497598

RESUMO

Silicon nanocrystals (SiNCs) featuring size-dependent novel optical and electrical properties have been widely employed for various functional devices. We have demonstrated SiNC-based hybrid photovoltaics (SiNC-HPVs) and proposed several approaches for performance promotion. Recently, owing to the superiorities such as low power operation, high portability, and designability, organic photovoltaics (OPVs) have been extensively studied for their potential indoor applications as power sources. SiNCs exhibit strong light absorption below 450 nm, which is capable of sufficient photocurrent generation under UV irradiation. Therefore, SiNC-HPVs are expected to be preferably used for energy harvesting systems in indoor applications because an indoor light source consists of a shorter wavelength component below 500 nm than solar light. We successfully demonstrated SiNC-HPVs with a PCE as high as 9.7%, corresponding to the output power density of 34.0 µW cm-2 under standard indoor light irradiation (1000 lx). In addition, we have found that SiNC defects working as electron traps influence the electrical properties of SiNCs substantially, a thermal annealing process was conducted towards the suppression of defects and the improvement of the SiNC-HPVs performance.

2.
J Vis Exp ; (119)2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28117778

RESUMO

The photoactive layer of a typical organic thin-film bulk-heterojunction (BHJ) solar cell commonly uses fullerene derivatives as the electron-accepting material. However, fullerene derivatives are air-sensitive; therefore, air-stable material is needed as an alternative. In the present study, we propose and describe the properties of Ti-alkoxide as an alternative electron-accepting material to fullerene derivatives to create highly air-stable BHJ solar cells. It is well-known that controlling the morphology in the photoactive layer, which is constructed with fullerene derivatives as the electron acceptor, is important for obtaining a high overall efficiency through the solvent method. The conventional solvent method is useful for high-solubility materials, such as fullerene derivatives. However, for Ti-alkoxides, the conventional solvent method is insufficient, because they only dissolve in specific solvents. Here, we demonstrate a new approach to morphology control that uses the molecular bulkiness of Ti-alkoxides without the conventional solvent method. That is, this method is one approach to obtain highly efficient, air-stable, organic-inorganic bulk-heterojunction solar cells.


Assuntos
Polímeros , Energia Solar , Titânio , Fulerenos , Solubilidade , Solventes
3.
Beilstein J Org Chem ; 12: 1401-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27559390

RESUMO

The ever increasing demand for clean energy has encouraged researchers to intensively investigate environmentally friendly photovoltaic devices. Inorganic-organic hybrid perovskite solar cells (PSCs) are very promising due to their potentials of easy fabrication processes and high power conversion efficiencies (PCEs). Designing hole-transporting materials (HTMs) is one of the key factors in achieving the high PCEs of PSCs. We now report the synthesis of two types of carbazole-based polymers, namely 3,6-Cbz-EDOT and 2,7-Cbz-EDOT, by Stille polycondensation. Despite the same chemical composition, 3,6-Cbz-EDOT and 2,7-Cbz-EDOT displayed different optical and electrochemical properties due to the different connectivity mode of the carbazole unit. Therefore, their performances as hole-transporting polymeric materials in the PSCs were also different. The device based on 2,7-Cbz-EDOT showed better photovoltaic properties with the PCE of 4.47% than that based on 3,6-Cbz-EDOT. This could be due to its more suitable highest occupied molecular orbital (HOMO) level and higher hole mobility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...