Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 579
Filtrar
1.
Nat Commun ; 14(1): 4150, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438333

RESUMO

The quantum vortex liquid (QVL) is an intriguing state of type-II superconductors in which intense quantum fluctuations of the superconducting (SC) order parameter destroy the Abrikosov lattice even at very low temperatures. Such a state has only rarely been observed, however, and remains poorly understood. One of the key questions is the precise origin of such intense quantum fluctuations and the role of nearby non-SC phases or quantum critical points in amplifying these effects. Here we report a high-field magnetotransport study of FeSe1-xSx and FeSe1-xTex which show a broad QVL regime both within and beyond their respective electron nematic phases. A clear correlation is found between the extent of the QVL and the strength of the superconductivity. This comparative study enables us to identify the essential elements that promote the QVL regime in unconventional superconductors and to demonstrate that the QVL regime itself is most extended wherever superconductivity is weakest.

2.
Phys Rev Lett ; 130(1): 012501, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36669221

RESUMO

The atomic masses of ^{55}Sc, ^{56,58}Ti, and ^{56-59}V have been determined using the high-precision multireflection time-of-flight technique. The radioisotopes have been produced at RIKEN's Radioactive Isotope Beam Factory (RIBF) and delivered to the novel designed gas cell and multireflection system, which has been recently commissioned downstream of the ZeroDegree spectrometer following the BigRIPS separator. For ^{56,58}Ti and ^{56-59}V, the mass uncertainties have been reduced down to the order of 10 keV, shedding new light on the N=34 shell effect in Ti and V isotopes by the first high-precision mass measurements of the critical species ^{58}Ti and ^{59}V. With the new precision achieved, we reveal the nonexistence of the N=34 empirical two-neutron shell gaps for Ti and V, and the enhanced energy gap above the occupied νp_{3/2} orbit is identified as a feature unique to Ca. We perform new Monte Carlo shell model calculations including the νd_{5/2} and νg_{9/2} orbits and compare the results with conventional shell model calculations, which exclude the νg_{9/2} and the νd_{5/2} orbits. The comparison indicates that the shell gap reduction in Ti is related to a partial occupation of the higher orbitals for the outer two valence neutrons at N=34.


Assuntos
Nêutrons , Titânio
3.
Phys Rev Lett ; 129(14): 142502, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36240396

RESUMO

The root mean square radii of the proton density distribution in ^{16-24}O derived from measurements of charge changing cross sections with a carbon target at ∼900A MeV together with the matter radii portray thick neutron skin for ^{22-24}O despite ^{22,24}O being doubly magic. Imprints of the shell closures at N=14 and 16 are reflected in local minima of their proton radii that provide evidence for the tensor interaction causing them. The radii agree with ab initio calculations employing the chiral NNLO_{sat} interaction, though skin thickness predictions are challenged. Shell model predictions agree well with the data.


Assuntos
Nêutrons , Prótons , Carbono
4.
Nat Commun ; 13(1): 2234, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477704

RESUMO

A long-standing crucial question with atomic nuclei is whether or not α clustering occurs there. An α particle (helium-4 nucleus) comprises two protons and two neutrons, and may be the building block of some nuclei. This is a very beautiful and fascinating idea, and is indeed plausible because the α particle is particularly stable with a large binding energy. However, direct experimental evidence has never been provided. Here, we show whether and how α(-like) objects emerge in atomic nuclei, by means of state-of-the-art quantum many-body simulations formulated from first principles, utilizing supercomputers including K/Fugaku. The obtained physical quantities exhibit agreement with experimental data. The appearance and variation of the α clustering are shown by utilizing density profiles for the nuclei beryllium-8, -10 and carbon-12. With additional insight by statistical learning, an unexpected crossover picture is presented for the Hoyle state, a critical gateway to the birth of life.

5.
Appl Opt ; 60(25): 7678-7685, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34613254

RESUMO

Radio absorptive materials (RAMs) are key elements for receivers in the millimeter-wave range. We previously established a method for production of RAM by using a 3D-printed mold. An advantage of this method is a wide range of choices for absorptive materials to be used. To take advantage of this flexibility, we added a range of absorptive materials to a base epoxy resin, STYCAST-2850FT, and examined the optical performance of the resultant RAM across a wide frequency range under cryogenic conditions. We found that adding a particular type of carbon fiber produced the best performance with a reflectance at 77 K estimated as 0.01%-3% over a frequency range of 20-300 GHz.

6.
Phys Rev Lett ; 125(10): 102502, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32955302

RESUMO

The low-spin structure of the semimagic ^{64}Ni nucleus has been considerably expanded: combining four experiments, several 0^{+} and 2^{+} excited states were identified below 4.5 MeV, and their properties established. The Monte Carlo shell model accounts for the results and unveils an unexpectedly complex landscape of coexisting shapes: a prolate 0^{+} excitation is located at a surprisingly high energy (3463 keV), with a collective 2^{+} state 286 keV above it, the first such observation in Ni isotopes. The evolution in excitation energy of the prolate minimum across the neutron N=40 subshell gap highlights the impact of the monopole interaction and its variation in strength with N.

7.
Nat Commun ; 11(1): 3242, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591502

RESUMO

Second-order processes in physics is a research topic focusing attention from several fields worldwide including, for example, non-linear quantum electrodynamics with high-power lasers, neutrinoless double-ß decay, and stimulated atomic two-photon transitions. For the electromagnetic nuclear interaction, the observation of the competitive double-γ decay from 137mBa has opened up the nuclear structure field for detailed investigation of second-order processes through the manifestation of off-diagonal nuclear polarisability. Here, we confirm this observation with an 8.7σ significance, and an improved value on the double-photon versus single-photon branching ratio as 2.62 × 10-6(30). Our results, however, contradict the conclusions from the original experiment, where the decay was interpreted to be dominated by a quadrupole-quadrupole component. Here, we find a substantial enhancement in the energy distribution consistent with a dominating octupole-dipole character and a rather small quadrupole-quadrupole component in the decay, hindered due to an evolution of the internal nuclear structure. The implied strongly hindered double-photon branching in 137mBa opens up the possibility of the double-photon branching as a feasible tool for nuclear-structure studies on off-diagonal polarisability in nuclei where this hindrance is not present.

8.
Phys Rev Lett ; 124(22): 222504, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32567915

RESUMO

We report the measurement of reaction cross sections (σ_{R}^{ex}) of ^{27,29}F with a carbon target at RIKEN. The unexpectedly large σ_{R}^{ex} and derived matter radius identify ^{29}F as the heaviest two-neutron Borromean halo to date. The halo is attributed to neutrons occupying the 2p_{3/2} orbital, thereby vanishing the shell closure associated with the neutron number N=20. The results are explained by state-of-the-art shell model calculations. Coupled-cluster computations based on effective field theories of the strong nuclear force describe the matter radius of ^{27}F but are challenged for ^{29}F.

9.
Regen Eng Transl Med ; 6(1): 7-17, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33748405

RESUMO

Limb regeneration is the outcome of a complex sequence of events that are mediated by interactions between cells derived from the tissues of the amputated stump. Early in regeneration, these interactions are mediated by growth factor/morphogen signaling associated with nerves and the wound epithelium. One shared property of these proregenerative signaling molecules is that their activity is dependent on interactions with sulfated glycosaminoglycans (GAGs), heparan sulfate proteoglycan (HSPG) in particular, in the extracellular matrix (ECM). We hypothesized that there are cells in the axolotl that synthesize specific HSPGs that control growth factor signaling in time and space. In this study we have identified a subpopulation of cells within the ECM of axolotl skin that express high levels of sulfated GAGs on their cell surface. These cells are dispersed in a grid-like pattern throughout the dermis as well as the loose connective tissues that surround the tissues of the limb. These cells alter their morphology during regeneration, and are candidates for being a subpopulation of connective tissue cells that function as the cells required for pattern-formation during regeneration. Given their high level of HSPG expression, their stellate morphology, and their distribution throughout the loose connective tissues, we refer to these as the positional information GRID (Groups that are Regenerative, Interspersed and Dendritic) cells. In addition, we have identified cells that stain for high levels of expression of sulfated GAGs in mouse limb connective tissue that could have an equivalent function to GRID cells in the axolotl. The identification of GRID cells may have important implications for work in the area of Regenerative Engineering.

10.
Phys Rev Lett ; 123(22): 222502, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31868396

RESUMO

The underlying structure of low-lying collective bands of atomic nuclei is discussed from a novel perspective on the interplay between single-particle and collective degrees of freedom, by utilizing state-of-the-art configuration interaction calculations on heavy nuclei. Besides the multipole components of the nucleon-nucleon interaction that drive collective modes forming those bands, the monopole component is shown to control the resistance against such modes. The calculated structure of ^{154}Sm corresponds to the coexistence between prolate and triaxial shapes, while that of ^{166}Er exhibits a deformed shape with a strong triaxial instability. Both findings differ from traditional views based on ß/γ vibrations. The formation of collective bands is shown to be facilitated from a self-organization mechanism.

11.
Phys Rev Lett ; 123(14): 142501, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31702209

RESUMO

Exclusive cross sections and momentum distributions have been measured for quasifree one-neutron knockout reactions from a ^{54}Ca beam striking on a liquid hydrogen target at ∼200 MeV/u. A significantly larger cross section to the p_{3/2} state compared to the f_{5/2} state observed in the excitation of ^{53}Ca provides direct evidence for the nature of the N=34 shell closure. This finding corroborates the arising of a new shell closure in neutron-rich calcium isotopes. The distorted-wave impulse approximation reaction formalism with shell model calculations using the effective GXPF1Bs interaction and ab initio calculations concur our experimental findings. Obtained transverse and parallel momentum distributions demonstrate the sensitivity of quasifree one-neutron knockout in inverse kinematics on a thick liquid hydrogen target with the reaction vertex reconstructed to final state spin-parity assignments.

12.
Nature ; 569(7754): 53-58, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043730

RESUMO

Nuclear magic numbers correspond to fully occupied energy shells of protons or neutrons inside atomic nuclei. Doubly magic nuclei, with magic numbers for both protons and neutrons, are spherical and extremely rare across the nuclear landscape. Although the sequence of magic numbers is well established for stable nuclei, experimental evidence has revealed modifications for nuclei with a large asymmetry between proton and neutron numbers. Here we provide a spectroscopic study of the doubly magic nucleus 78Ni, which contains fourteen neutrons more than the heaviest stable nickel isotope. We provide direct evidence of its doubly magic nature, which is also predicted by ab initio calculations based on chiral effective-field theory interactions and the quasi-particle random-phase approximation. Our results also indicate the breakdown of the neutron magic number 50 and proton magic number 28 beyond this stronghold, caused by a competing deformed structure. State-of-the-art phenomenological shell-model calculations reproduce this shape coexistence, predicting a rapid transition from spherical to deformed ground states, with 78Ni as the turning point.

13.
Radiat Prot Dosimetry ; 184(3-4): 510-513, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31038711

RESUMO

In the present study, variations in ambient gamma dose rate associated with snow cover were examined in a radioactive-contaminated site in Fukushima Prefecture, Japan. The ambient gamma dose rates decreased with increasing snow depth. The reduction trends were different between fresh snow (0.1-0.2 g/cm3) and granular snow (0.3-0.4 g/cm3) depending on snow density. Snow cover water content (snow water equivalent) calculated from snow depth and density was a key parameter governing the reduction in the ambient gamma dose rate. The ambient gamma dose rates reduced to 0.6 and 0.5 at 4 g/cm2 and 8 g/cm2 of snow water equivalent, respectively. Based on gamma-ray flux density distributions, the ambient gamma dose rates from the primary gamma rays decreased more compared to those from scattered gamma rays due to snow cover.


Assuntos
Radioisótopos de Césio/análise , Acidente Nuclear de Fukushima , Monitoramento de Radiação/métodos , Neve/química , Poluentes Radioativos do Solo/análise , Raios gama , Japão , Doses de Radiação , Estações do Ano
14.
Sci Adv ; 4(12): eaav0618, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30547091

RESUMO

After brain injury, neural stem cell-derived neuronal precursors (neuroblasts) in the ventricular-subventricular zone migrate toward the lesion. However, the ability of the mammalian brain to regenerate neuronal circuits for functional recovery is quite limited. Here, using a mouse model for ischemic stroke, we show that neuroblast migration is restricted by reactive astrocytes in and around the lesion. To migrate, the neuroblasts use Slit1-Robo2 signaling to disrupt the actin cytoskeleton in reactive astrocytes at the site of contact. Slit1-overexpressing neuroblasts transplanted into the poststroke brain migrated closer to the lesion than did control neuroblasts. These neuroblasts matured into striatal neurons and efficiently regenerated neuronal circuits, resulting in functional recovery in the poststroke mice. These results suggest that the positioning of new neurons will be critical for functional neuronal regeneration in stem/progenitor cell-based therapies for brain injury.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neurogênese , Neuroglia/metabolismo , Neurônios/metabolismo , Receptores Imunológicos/metabolismo , Regeneração , Transdução de Sinais , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Movimento Celular , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Camundongos , Camundongos Knockout , Ligação Proteica , Multimerização Proteica , Receptores Imunológicos/genética , Proteína cdc42 de Ligação ao GTP/metabolismo
15.
Nat Commun ; 9(1): 5066, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30498231

RESUMO

Single-spin qubits in semiconductor quantum dots hold promise for universal quantum computation with demonstrations of a high single-qubit gate fidelity above 99.9% and two-qubit gates in conjunction with a long coherence time. However, initialization and readout of a qubit is orders of magnitude slower than control, which is detrimental for implementing measurement-based protocols such as error-correcting codes. In contrast, a singlet-triplet qubit, encoded in a two-spin subspace, has the virtue of fast readout with high fidelity. Here, we present a hybrid system which benefits from the different advantages of these two distinct spin-qubit implementations. A quantum interface between the two codes is realized by electrically tunable inter-qubit exchange coupling. We demonstrate a controlled-phase gate that acts within 5.5 ns, much faster than the measured dephasing time of 211 ns. The presented hybrid architecture will be useful to settle remaining key problems with building scalable spin-based quantum computers.

16.
Phys Rev Lett ; 121(19): 192501, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30468600

RESUMO

The lifetimes of the first excited 2^{+}, 4^{+}, and 6^{+} states in ^{98}Zr were measured with the recoil-distance Doppler shift method in an experiment performed at GANIL. Excited states in ^{98}Zr were populated using the fission reaction between a 6.2 MeV/u ^{238}U beam and a ^{9}Be target. The γ rays were detected with the EXOGAM array in correlation with the fission fragments identified by mass and atomic number in the VAMOS++ spectrometer. Our result shows a very small B(E2;2_{1}^{+}→0_{1}^{+}) value in ^{98}Zr, thereby confirming the very sudden onset of collectivity at N=60. The experimental results are compared to large-scale Monte Carlo shell model and beyond-mean-field calculations. The present results indicate the coexistence of two additional deformed shapes in this nucleus along with the spherical ground state.

18.
Pharmazie ; 73(7): 422-424, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30001779

RESUMO

BACKGROUND/AIM: Dose adjustment of vancomycin (VCM) is important in improving clinical outcomes and avoiding adverse effects such as nephrotoxicity. Although pharmacist-managed VCM therapy has been reported to optimize treatment, there are no studies focused on pharmacist expertise to date. In this study, we compared the contribution of pharmacists trained for infectious diseases and general pharmacists to dose adjustment of VCM. PATIENTS AND METHODS: We retrospectively investigated VCM trough concentration after dose adjustment by both trained (n = 67) and general (without special training for infectious diseases; n = 85) pharmacists. We also compared the incidence of nephrotoxicity during VCM treatment in both groups. RESULTS: The rate of achieving therapeutic VCM trough concentration (10-20 µg/mL) was higher in the trained group than in the control group (80.6 vs. 54.1%, p < 0.001). No significant differences in incidence of nephrotoxicity were observed between the two groups (p = 0.744). Trained pharmacists could contribute more successfully to the achievement of therapeutic VCM concentration ranges without increasing the risk of nephrotoxicity.


Assuntos
Antibacterianos/administração & dosagem , Farmacêuticos/organização & administração , Serviço de Farmácia Hospitalar/organização & administração , Vancomicina/administração & dosagem , Adulto , Idoso , Antibacterianos/efeitos adversos , Antibacterianos/farmacocinética , Infecções Bacterianas/tratamento farmacológico , Relação Dose-Resposta a Droga , Feminino , Humanos , Incidência , Nefropatias/induzido quimicamente , Nefropatias/epidemiologia , Masculino , Pessoa de Meia-Idade , Papel Profissional , Estudos Retrospectivos , Especialização , Vancomicina/efeitos adversos , Vancomicina/farmacocinética
19.
Nat Commun ; 9(1): 1594, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29686394

RESUMO

The nuclear shell structure, which originates in the nearly independent motion of nucleons in an average potential, provides an important guide for our understanding of nuclear structure and the underlying nuclear forces. Its most remarkable fingerprint is the existence of the so-called magic numbers of protons and neutrons associated with extra stability. Although the introduction of a phenomenological spin-orbit (SO) coupling force in 1949 helped in explaining the magic numbers, its origins are still open questions. Here, we present experimental evidence for the smallest SO-originated magic number (subshell closure) at the proton number six in 13-20C obtained from systematic analysis of point-proton distribution radii, electromagnetic transition rates and atomic masses of light nuclei. Performing ab initio calculations on 14,15C, we show that the observed proton distribution radii and subshell closure can be explained by the state-of-the-art nuclear theory with chiral nucleon-nucleon and three-nucleon forces, which are rooted in the quantum chromodynamics.

20.
Phys Rev Lett ; 121(25): 252501, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30608829

RESUMO

The first 2^{+} and 3^{-} states of the doubly magic nucleus ^{132}Sn are populated via safe Coulomb excitation employing the recently commissioned HIE-ISOLDE accelerator at CERN in conjunction with the highly efficient MINIBALL array. The ^{132}Sn ions are accelerated to an energy of 5.49 MeV/nucleon and impinged on a ^{206}Pb target. Deexciting γ rays from the low-lying excited states of the target and the projectile are recorded in coincidence with scattered particles. The reduced transition strengths are determined for the transitions 0_{g.s.}^{+}→2_{1}^{+}, 0_{g.s.}^{+}→3_{1}^{-}, and 2_{1}^{+}→3_{1}^{-} in ^{132}Sn. The results on these states provide crucial information on cross-shell configurations which are determined within large-scale shell-model and Monte Carlo shell-model calculations as well as from random-phase approximation and relativistic random-phase approximation. The locally enhanced B(E2;0_{g.s.}^{+}→2_{1}^{+}) strength is consistent with the microscopic description of the structure of the respective states within all theoretical approaches. The presented results of experiment and theory can be considered to be the first direct verification of the sphericity and double magicity of ^{132}Sn.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...