Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Spectrosc ; : 37028241262040, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38881211

RESUMO

Micro- and non-destructive methods of estimating compressive strength are useful for diagnosing the degradation of reinforced structures. The velocity of waves propagating through concrete can be measured using conventional non-destructive methods; however, the propagation path of waves varies depending on the distribution of coarse aggregate, resulting in variations in velocity at different measurement points. To address this issue, a method based on laser-induced breakdown spectroscopy (LIBS) and multivariate analysis was developed in this study for estimating the compressive strength of concrete non-destructively, ensuring the non-influence of the coarse aggregate spatial distribution. The method is based on the correlation between the emission intensity of the spectrum and the hardness of the object to be measured. Principal component analysis (PCA) and partial least squares regression (PLSR) were used to extract the mortar spectrum, which determines the compressive strength of concrete, from a mixture of aggregate and mortar spectra. The compressive strength estimated based on the proposed method was consistent with the values obtained from the compressive strength test, which indicates the possibility of using multi-variable analysis to estimate the compressive strength of concrete. Furthermore, the proposed method enabled on-site measurements through a simple experimental setup and insensitivity to spectral noise offered by partial least-squares regression.

2.
R Soc Open Sci ; 10(8): 230153, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37564065

RESUMO

Magnitude information is often correlated in the external world, providing complementary information about the environment. As if to reflect this relationship, the perceptions of different magnitudes (e.g. time and numerosity) are known to influence one another. Recent studies suggest that such magnitude interaction is similar to cue integration, such as multisensory integration. Here, we tested whether human observers could integrate the magnitudes of two quantities with distinct physical units (i.e. time and numerosity) as abstract magnitude information. The participants compared the magnitudes of two visual stimuli based on time, numerosity, or both. Consistent with the predictions of the maximum-likelihood estimation model, the participants integrated time and numerosity in a near-optimal manner; the weight of each dimension was proportional to their relative reliability, and the integrated estimate was more reliable than either the time or numerosity estimate. Furthermore, the integration approached a statistical optimum as the temporal discrepancy of the acquisition of each piece of information became smaller. These results suggest that magnitude interaction arises through a similar computational mechanism to cue integration. They are also consistent with the idea that different magnitudes are processed by a generalized magnitude system.

3.
Iperception ; 13(1): 20416695221078878, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237401

RESUMO

Recent studies claim that estimating the magnitude of the spatial and temporal aspects of one's self-motion shows similar characteristics, suggesting shared processing mechanisms between these two dimensions. While the estimation of other magnitude dimensions, such as size, number, and duration, exhibits negative aftereffects after prolonged exposure to the stimulus, it remains to be elucidated whether this could occur similarly in the estimation of the distance travelled and time elapsed during one's self-motion. We sought to fill this gap by examining the effects of adaptation on distance and time estimation using a virtual navigation task. We found that a negative aftereffect occurred in the distance reproduction task after repeated exposure to self-motion with a fixed travel distance. No such aftereffect occurred in the time reproduction task after repeated exposure to self-motion with a fixed elapsed time. Further, the aftereffect in distance reproduction occurred only when the distance of the adapting stimulus was fixed, suggesting that it did not reflect adaptation to time, which varied with distance. The estimation of spatial and temporal aspects of self-motion is thus processed by partially separable mechanisms, with the distance estimation being similar to the estimation of other magnitude dimensions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...