Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Qual ; 50(1): 158-171, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33345349

RESUMO

Relay-cropping of the novel oilseeds winter camelina (Camelina sativa L.) and pennycress (Thlaspi arvense L.) with short-season crops such as soybean [Glycine max (L.) Merr.] can provide economic and environmental incentives for adopting winter cover crop practices in the U.S. Upper Midwest. However, their ability to reduce nutrient loss in surface runoff is unknown. Accordingly, surface runoff and quality were evaluated during three seasonal phases (cover, intercrop, and soybean) over 2 yr in four cover crop-soybean treatments (pennycress, winter camelina, forage radish [Raphanus sativus L.], and winter rye [Secale cereale L.]) compared with no-till and chisel-till fallow treatments. Runoff was collected with Gerlach troughs and assessed for concentrations and loads of NO3 - -N, total mineral N, soluble reactive P (SRP), and total suspended solids (TSS). Cumulative runoff and nutrient loads were greater during the winter cover phase because of increased snow melt and freeze-thaw released nutrients from living vegetation. In contrast, cumulative TSS was greater during intercrop and soybean phases due to high-intensity rainfall events with an open soybean canopy. Average TSS loads during the intercrop phase were reduced by 75% in pennycress compared with fallow and radish treatments. During the soybean phase, average TSS, total mineral N, and SRP loads were generally elevated in cover crop treatments compared with no-till. Overwintering cover crops may contribute to mobility of nutrients solubilized from living or decomposing vegetation; however, this was balanced by their potential to reduce runoff and TSS during high-intensity spring rains.


Assuntos
Agricultura , Glycine max , Produtos Agrícolas , Nutrientes , Chuva
2.
Front Immunol ; 11: 164, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32161584

RESUMO

Phenotyping of immune cell subsets in clinical trials is limited to well-defined phenotypes, due to technological limitations of reporting flow cytometry multi-dimensional phenotyping data. We developed a multi-dimensional phenotyping analysis tool and applied it to detect nitric oxide (NO) levels in peripheral blood immune cells before and after adjuvant ipilimumab co-administration with a peptide vaccine in melanoma patients. We analyzed inhibitory and stimulatory markers for immune cell phenotypes that were felt to be important in the NO analysis. The pipeline allows visualization of immune cell phenotypes without knowledge of clustering techniques and to categorize cells by association with relapse-free survival (RFS). Using this analysis, we uncovered the potential for a dichotomous role of NO as a pro- and anti-melanoma factor. NO was found in subsets of immune-suppressor cells associated with shorter-term (≤ 1 year) RFS, whereas NO was also present in immune-stimulatory effector cells obtained from patients with significant longer-term (> 1 year) RFS. These studies provide insights into the cell-specific immunomodulatory role of NO. The methods presented herein can be applied to monitor the pro- and anti-tumor effects of a variety of immune-based therapeutics in cancer patients. Clinical Trial Registration Number: NCT00084656 (https://clinicaltrials.gov/ct2/show/NCT00084656).


Assuntos
Citometria de Fluxo/métodos , Imunoterapia/métodos , Leucócitos Mononucleares/imunologia , Melanoma/imunologia , Melanoma/terapia , Óxido Nítrico/metabolismo , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/terapia , Adulto , Idoso , Antineoplásicos Imunológicos/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Feminino , Humanos , Imunidade , Ipilimumab/uso terapêutico , Masculino , Melanoma/sangue , Pessoa de Meia-Idade , Óxido Nítrico/imunologia , Fenótipo , Neoplasias Cutâneas/sangue , Vacinas de Subunidades Antigênicas/uso terapêutico , Adulto Jovem
3.
J Environ Qual ; 48(3): 660-669, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31180428

RESUMO

Winter cover crops might reduce nutrient loss to leaching in the Upper Midwest. New oilseed-bearing cash cover crops, such as winter camelina ( L.) and pennycress ( L.), may provide needed incentives. However, the abilities of these crops to sequester labile soil nutrients are unknown. To address this unknown, N in shoot biomass, plant-available N and P in soil, and NO-N and soluble reactive P in soil water collected from lysimeters placed at 30, 60, and 100 cm were measured in cover crop and fallow treatments established in spring wheat ( L.) stubble and followed through a cover crop-soybean [ (L.) Merr.] rotation. Five no-till cover treatments (forage radish [ L.], winter rye [ L.], field pennycress, and winter camelina) were compared with two fallow treatments (chisel till and no-till). Pennycress and winter camelina were harvested at maturity after relay sowing of soybean. Winter rye and radish sequestered more N in autumn shoot biomass, ranging from 26 to 38 kg N ha, but overwintering oilseeds matched or exceeded N uptake in spring, ranging 28 to 49 kg N ha before soybean planting. Nitrogen uptake was reflected by reductions in soil water NO-N during cover crop and intercropping phases for all cover treatments (mean = 4 mg L), compared with fallow treatments (mean = 31 mg L). Cash cover crops like pennycress and winter camelina provide both environmental and potential economic resources to growers. They are cash-generating crops able to sequester labile soil nutrients, which protects and promotes soil health from autumn through early summer.


Assuntos
Glycine max , Nitrogênio , Agricultura , Clima Frio , Solo
4.
Genes (Basel) ; 9(9)2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134600

RESUMO

Perennial agriculture has been proposed as an option to improve the sustainability of cropping systems, by increasing the efficiency of resource use, while also providing ecosystem services. Neo-domestication, the contemporary domestication of plants that have not previously been used in agriculture, can be used to generate new crops for these systems. Here we explore the potential of a tetraploid (2n = 4x = 68) interspecific hybrid sunflower as a perennial oilseed for use in multifunctional agricultural systems. A population of this novel tetraploid was obtained from crosses between the annual diploid oilseed crop Helianthus annuus (2n = 2x = 34) and the perennial hexaploid tuber crop Helianthus tuberosus (2n = 6x = 102). We selected for classic domestication syndrome traits for three generations. Substantial phenotypic gains were made, in some cases approaching 320%. We also analyzed the genetic basis of tuber production (i.e., perenniality), with the goal of obtaining molecular markers that could be used to facilitate future breeding in this system. Results from quantitative trait locus (QTL) mapping suggest that tuber production has an oligogenic genetic basis. Overall, this study indicates that substantial gains towards domestication goals can be achieved over contemporary time scales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...