Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 149: 213401, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37018914

RESUMO

OBJECTIVE: Tissue engineering (TE) is the study and development of biological substitutes to restore, maintain or improve tissue function. Tissue engineered constructs (TECs) still present differences in mechanical and biological properties compared to native tissue. Mechanotransduction is the process through which mechanical stimulation triggers proliferation, apoptosis, and extracellular matrix synthesis, among other cell activities. Regarding that aspect, the effect of in vitro stimulations such as compression, stretching, bending or fluid shear stress loading modalities have been extensively studied. A fluid flow used to produce contactless mechanical stimulation induced by an air pulse could be easily achieved in vivo without altering the tissue integrity. METHODS: A new air-pulse device for contactless and controlled mechanical simulation of a TECs was developed and validated in this study conducted in the following three phases: 1) conception of the controlled air-pulse device combined with a 3D printed bioreactor; 2) experimental and numerical mechanical characterization of the air-pulse impact by digital image correlation; and 3) achieving sterility and noncytotoxicity of the air-pulse and of the 3D printed bioreactor using a novel dedicated sterilization process. RESULTS: We demonstrated that the treated PLA (polylactic acid) was noncytotoxic and did not influence cell proliferation. An ethanol/autoclaved sterilization protocol for 3D printed objects in PLA has been developed in this study, enabling the use of 3D printing in cell culture. A numerical twin of the device was developed and experimentally characterized by digital image correlation. It showed a coefficient of determination R2 = 0.98 between the numerical and averaged experimental surface displacement profiles of the TEC substitute. CONCLUSION: The results of the study assessed the noncytotoxicity of PLA for prototyping by 3D printing the homemade bioreactor. A novel sterilization process for PLA was developed in this study based on a thermochemical process. A numerical twin using fluid-structure interaction method has been developed to investigate the micromechanical effects of air pulses inside the TEC, which cannot all be measured experimentally, for instance, wave propagation generated during the air-pulse impact. The device could be used to study the cell response to contactless cyclic mechanical stimulation, particularly in TEC with fibroblasts, stromal cells and mesenchymal stem cells, which have been shown to be sensitive to the frequency and strain level at the air-liquid interface.


Assuntos
Mecanotransdução Celular , Engenharia Tecidual , Engenharia Tecidual/métodos , Mecanotransdução Celular/fisiologia , Estresse Mecânico , Reatores Biológicos , Poliésteres
2.
Proc Inst Mech Eng H ; 233(10): 963-978, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31311417

RESUMO

A literature review was conducted to develop more realistic medical simulators that better prepare aspiring health professionals to perform a medical procedure in vivo. Thus, this review proposes an approach that might assist researchers design improved medical simulators, particularly new materials that would enhance the sensation of touch for skin substitutes. By targeting the current needs in the field of simulation learning, we concluded that peripheral venous catheter insertion simulators lack realistic haptic feedback. Enhanced peripheral venous catheter insertion simulators will accelerate the mastery of the medical procedure, thus decreasing the number of failures in patients and costs related to this procedure.


Assuntos
Cateterismo Periférico/instrumentação , Desenho de Equipamento/métodos , Guias como Assunto , Humanos , Fenômenos Mecânicos , Relações Médico-Paciente , Pele
3.
J Mech Behav Biomed Mater ; 41: 241-50, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25455608

RESUMO

The anisotropic failure characteristics of human skin are relatively unknown at strain rates typical in impact biomechanics. This study reports the results of an experimental protocol to quantify the effect of dynamic strain rates and the effect of sample orientation with respect to the Langer lines. Uniaxial tensile tests were carried out at three strain rates (0.06s(-1), 53s(-1), and 167s(-1)) on 33 test samples excised from the back of a fresh cadaver. The mean ultimate tensile stress, mean elastic modulus and mean strain energy increased with increasing strain rates. While the stretch ratio at ultimate tensile stress was not affected by the strain rate, it was influenced by the orientation of the samples (parallel and perpendicular to the Langer lines. The orientation of the sample also had a strong influence on the ultimate tensile stress, with a mean value of 28.0 ± 5.7 MPa for parallel samples, and 15.6 ± 5.2 MPa for perpendicular samples, and on the elastic modulus, with corresponding mean values of 160.8 MPa ± 53.2 MPa and 70.6 MPa ± 59.5 MPa. The study also pointed out the difficulties in controlling the effective applied strain rate in dynamic characterization of soft tissue and the resulting abnormal stress-strain relationships. Finally, data collected in this study can be used to develop constitutive models where high loading rates are of primary interest.


Assuntos
Teste de Materiais , Pele , Estresse Mecânico , Resistência à Tração , Anisotropia , Humanos
4.
Ann Biomed Eng ; 40(8): 1666-78, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22427196

RESUMO

Collagen fibres play an important role in the mechanical behaviour of many soft tissues. Modelling of such tissues now often incorporates a collagen fibre distribution. However, the availability of accurate structural data has so far lagged behind the progress of anisotropic constitutive modelling. Here, an automated process is developed to identify the orientation of collagen fibres using inexpensive and relatively simple techniques. The method uses established histological techniques and an algorithm implemented in the MATLAB image processing toolbox. It takes an average of 15 s to evaluate one image, compared to several hours if assessed visually. The technique was applied to histological sections of human skin with different Langer line orientations and a definite correlation between the orientation of Langer lines and the preferred orientation of collagen fibres in the dermis (p < 0.001, R(2) = 0.95) was observed. The structural parameters of the Gasser-Ogden-Holzapfel (GOH) model were all successfully evaluated. The mean dispersion factor for the dermis was κ = 0.1404±0.0028. The constitutive parameters µ, k(1) and k(2) were evaluated through physically-based, least squares curve-fitting of experimental test data. The values found for µ, k(1) and k(2) were 0.2014 MPa, 243.6 and 0.1327, respectively. Finally, the above model was implemented in ABAQUS/Standard and a finite element (FE) computation was performed of uniaxial extension tests on human skin. It is expected that the results of this study will assist those wishing to model skin, and that the algorithm described will be of benefit to those who wish to evaluate the collagen dispersion of other soft tissues.


Assuntos
Colágeno/química , Derme/química , Anisotropia , Humanos
5.
J Mech Behav Biomed Mater ; 5(1): 139-48, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22100088

RESUMO

The mechanical properties of skin are important for a number of applications including surgery, dermatology, impact biomechanics and forensic science. In this study, we have investigated the influence of location and orientation on the deformation characteristics of 56 samples of excised human skin. Uniaxial tensile tests were carried out at a strain rate of 0.012 s(-1) on skin from the back. Digital Image Correlation was used for 2D strain measurement and a histological examination of the dermis was also performed. The mean ultimate tensile strength (UTS) was 21.6±8.4 MPa, the mean failure strain 54%±17%, the mean initial slope 1.18±0.88 MPa, the mean elastic modulus 83.3±34.9 MPa and the mean strain energy was 3.6±1.6 MJ/m(3). A multivariate analysis of variance has shown that these mechanical properties of skin are dependent upon the orientation of the Langer lines (P<0.0001-P=0.046). The location of specimens on the back was also found to have a significant effect on the UTS (P=0.0002), the elastic modulus (P=0.001) and the strain energy (P=0.0052). The histological investigation concluded that there is a definite correlation between the orientation of the Langer lines and the preferred orientation of collagen fibres in the dermis (P<0.001). The data obtained in this study will provide essential information for those wishing to model the skin using a structural constitutive model.


Assuntos
Fenômenos Mecânicos , Pele , Idoso de 80 Anos ou mais , Anisotropia , Fenômenos Biomecânicos , Colágeno/metabolismo , Derme/citologia , Derme/metabolismo , Feminino , Humanos , Masculino , Análise de Regressão , Pele/citologia , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...