Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 10(1): 1434-41, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26688072

RESUMO

The thermal motion of polymer chains in a crowded environment is anisotropic and highly confined. Whereas theoretical and experimental progress has been made, typically only indirect evidence of polymer dynamics is obtained either from scattering or mechanical response. Toward a complete understanding of the complicated polymer dynamics in crowded media such as biological cells, it is of great importance to unravel the role of heterogeneity and molecular individualism. In the present work, we investigate the dynamics of synthetic polymers and the tube-like motion of individual chains using time-resolved fluorescence microscopy. A single fluorescently labeled polymer molecule is observed in a sea of unlabeled polymers, giving access to not only the dynamics of the probe chain itself but also to that of the surrounding network. We demonstrate that it is possible to extract the characteristic time constants and length scales in one experiment, providing a detailed understanding of polymer dynamics at the single chain level. The quantitative agreement with bulk rheology measurements is promising for using local probes to study heterogeneity in complex, crowded systems.

2.
J Phys Chem B ; 115(7): 1590-600, 2011 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-21280605

RESUMO

We report on the synthesis and detailed photo-physical investigation of four model chromophore side chain polyisocyanopeptides: two homopolymers of platinum-porphyrin functionalized polyisocyanopeptides (Pt-porphyrin-PIC) and perylene-bis(dicarboximide) functionalized polyisocyanopeptides (PDI-PIC), and two statistical copolymers with different ratios of Pt-porphyrin and PDI molecules attached to a rigid, helical polyisocyanopeptide backbone. (1)H NMR and circular dichroism measurements confirm that our model compounds retain a chiral architecture in the presence of the chromophores. The combination of Pt-porphyrin and PDI chromophores allows charge- and/or energy transfer to happen. We observe the excitation and relaxation pathways for selective excitation of the Pt-porphyrin and PDI chromophores. Studies of photoluminescence and transient absorption on nanosecond and picosecond scales upon excitation of Pt-porphyrin chromophores in our multichromophoric assemblies show similar photophysical features to those of the Pt-porphyrin monomers. In contrast, excitation of perylene chromophores results in a series of energy and charge transfer processes with the Pt-porphyrin group and forms additional charge-transfer states, which behave as an intermediate state that facilitates electronic coupling in these multichromophoric systems.


Assuntos
Elétrons , Isocianatos/química , Peptídeos/química , Polímeros/química , Transferência de Energia , Isocianatos/síntese química , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Peptídeos/síntese química , Processos Fotoquímicos , Polímeros/síntese química , Espectrofotometria Ultravioleta
3.
Adv Mater ; 22(8): E81-8, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20217805

RESUMO

The optimization of the electronic properties of molecular materials based on optically or electrically active organic building blocks requires a fine-tuning of their self-assembly properties at surfaces. Such a fine-tuning can be obtained on a scale up to 10 nm by mastering principles of supramolecular chemistry, i.e., by using suitably designed molecules interacting via pre-programmed noncovalent forces. The control and fine-tuning on a greater length scale is more difficult and challenging. This Research News highlights recent results we obtained on a new class of macromolecules that possess a very rigid backbone and side chains that point away from this backbone. Each side chain contains an organic semiconducting moiety, whose position and electronic interaction with neighboring moieties are dictated by the central macromolecular scaffold. A combined experimental and theoretical approach has made it possible to unravel the physical and chemical properties of this system across multiple length scales. The (opto)electronic properties of the new functional architectures have been explored by constructing prototypes of field-effect transistors and solar cells, thereby providing direct insight into the relationship between architecture and function.


Assuntos
Eletrônica , Substâncias Macromoleculares/química , Nanoestruturas/química , Cianetos/química , Modelos Moleculares , Polímeros/química , Energia Solar , Transistores Eletrônicos
4.
J Am Chem Soc ; 131(20): 7055-63, 2009 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-19405546

RESUMO

We report on the self-assembly and the electrical characterization of bicomponent films consisting of an organic semiconducting small molecule blended with a rigid polymeric scaffold functionalized in the side chains with monomeric units of the same molecule. The molecule and polymer are a perylene-bis(dicarboximide) monomer (M-PDI) and a perylene-bis(dicarboximide)-functionalized poly(isocyanopeptide) (P-PDI), which have been codeposited on SiO(x) and mica substrates from solution. These bicomponent films have been characterized by atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM), revealing the relationship between architecture and function for various supramolecular nanocrystalline arrangements at a nanometer spatial resolution. Monomer-polymer interactions can be controlled by varying solvent and/or substrate polarity, so that either the monomer packing dictates the polymer morphology or vice versa, leading to a morphology exhibiting M-PDI nanocrystals connected with each other by P-PDI polymer wires. Compared to pure M-PDI or P-PDI films, those bicomponent films that possess polymer interconnections between crystallites of the monomer display a significant improvement in electrical connectivity and a 2 orders of magnitude increase in charge carrier mobility within the film, as measured in thin film transistor (TFT) devices. Of a more fundamental interest, our technique allows the bridging of semiconducting crystals, without the formation of injection barriers at the connection points.

5.
Chemistry ; 15(11): 2536-47, 2009 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-19177474

RESUMO

Exciton migration! Spectroscopic analyses and extensive molecular dynamics studies revealed a well-defined 4(1) helix in which the perylene molecules (see figure) form four "helter-skelter-like" overlapping pathways along which excitons and electrons can rapidly migrate.We report on a combined experimental and computational investigation on the synthesis and thorough characterization of the structure of perylene-functionalized polyisocyanides. Spectroscopic analyses and extensive molecular dynamics studies revealed a well defined 4(1) helix in which the perylene molecules form four "helter skelter-like" overlapping pathways along which excitons and electrons can rapidly migrate. The well-defined polymer scaffold stabilized by hydrogen bonding, to which the chromophores are attached, accounts for the precise architectural definition, and molecular stiffness observed for these molecules. Molecular-dynamics studies showed that the chirality present in these polymers is expressed in the formation of stable right-handed helices. The formation of chiral supramolecular structures is further supported by the measured and calculated bisignated Cotton effect. The structural definition of the chromophores aligned in one direction along the backbone is highlighted by the extremely efficient exciton migration rates and charge densities measured with Transient Absorption Spectroscopy.


Assuntos
Modelos Moleculares , Peptídeos/química , Perileno/química , Polímeros/química , Poliuretanos/química , Eletroquímica , Estrutura Molecular , Espectrometria de Fluorescência
6.
J Am Chem Soc ; 130(44): 14605-14, 2008 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-18844351

RESUMO

The physicochemical properties of organic (multi)component films for optoelectronic applications depend on both the mesoscopic and nanoscale architectures within the semiconducting material. Two main classes of semiconducting materials are commonly used: polymers and (liquid) crystals of small aromatic molecules. Whereas polymers (e.g., polyphenylenevinylenes and polythiophenes) are easy to process in solution in thin and uniform layers, small molecules can form highly defined (liquid) crystals featuring high charge mobilities. Herein, we combine the two material types by employing structurally well-defined polyisocyanopeptide polymers as scaffolds to precisely arrange thousands of electron-accepting molecules, namely, perylenebis(dicarboximides) (PDIs), in defined chromophoric wires with lengths of hundreds of nanometers. The polymer backbone enforces high control over the spatial location of PDI dyes, favoring both enhanced exciton and charge transfer. When blended with an electron-donor system such as regioregular poly(3-hexylthiophene), this polymeric PDI shows a relative improvement in charge generation and diffusion with respect to monomeric, aggregated PDI. In order to correlate this enhanced behavior with respect to the architecture, atomic force microscopy investigations on the mixtures were carried out. These studies revealed that the two polymers form interpenetrated bundles having a nanophase-segregated character and featuring a high density of contact points between the two different phases. In order to visualize the relationship between the architecture and the photovoltaic efficiency, Kelvin probe force microscopy measurements were carried out on submonolayer-thick films. This technique allowed for the first time the direct visualization of the photovoltaic activity occurring in such a nanoscale phase-segregated ultrathin film with true nanoscale spatial resolution, thus making possible a study of the correlation between function and architecture with nanoscale resolution.

7.
J Am Chem Soc ; 127(31): 11047-52, 2005 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-16076212

RESUMO

A simple method for the construction of a stable, tunable, self-assembled command layer for liquid crystal display purposes is described. A pyridine-functionalized oligosiloxane spontaneously forms an anisotropic, grooved surface on indium-tin-oxide, enabling it to align liquid crystalline molecules. The pyridine functions act as seeds for the epitaxial growth of stacks of highly ordered zinc phthalocyanines, the height of which can be controlled. These stacks increase the interaction between the surface and the liquid crystalline matrix by amplifying the surface ordering into the liquid crystal bulk. By varying the height of the stacks, direct control over the properties of the liquid crystal domains is achieved. These properties can be further tuned by adding to the liquid crystal, micro- and nanomolar concentrations of nitrogen-containing compounds, which are capable of interacting with and dissolving the stacks. The procedures we describe offer possibilities to use such tunable systems in LCD-based sensor devices as well as in solar-cell applications.

9.
Langmuir ; 20(21): 8955-7, 2004 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-15461471

RESUMO

The isolation of single polyelectrolyte chains of water-soluble poly(isocyanodipeptide)s (PICs) bearing carboxylic acid terminated side chains occurring both at surfaces and in solution was accomplished by reducing the intermolecular interactions through complexation with cations or positively charged surfactants. Scanning force microscopy and viscosity analyses revealed that this method allows to tune the conformation of the macromolecule, which is of importance for tailoring the physicochemical properties of the material. This is particularly significant for the use of these polymer chains as seed for biomineralization processes.


Assuntos
Dipeptídeos/química , Nitrilas/química , Polímeros/química , Ácidos Carboxílicos/química , Eletrólitos/química , Microscopia de Força Atômica , Conformação Molecular , Tamanho da Partícula , Soluções/química , Propriedades de Superfície , Tensoativos/química , Viscosidade , Água/química
10.
Chem Commun (Camb) ; (23): 2856-7, 2003 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-14680209

RESUMO

The directional drying of a low-salt Tris-EDTA (TE)-buffer to give an alignment layer offers a simple, one-step, non-contact procedure for the construction of parallel liquid crystal displays (LCDs), which can be used to amplify the presence of DNA to scales visible to the naked eye, opening up possibilities for easy detection of bio recognition events.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Soluções Tampão , DNA/análise , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA