Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(22)2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36429079

RESUMO

The AMPA glutamate receptor (AMPAR) is the major type of synaptic excitatory ionotropic receptor in the brain. AMPARs have four different subunits, GluA1-4 (each encoded by different genes, Gria1, Gria2, Gria3 and Gria4), that can form distinct tetrameric assemblies. The most abundant AMPAR subtypes in the hippocampus are GluA1/2 and GluA2/3 heterotetramers. Each subtype contributes differentially to mechanisms of synaptic plasticity, which may be in part caused by how these receptors are regulated by specific associated proteins. A broad range of AMPAR interacting proteins have been identified, including the well-studied transmembrane AMPA receptor regulatory proteins TARP-γ2 (also known as Stargazin) and TARP-γ8, Cornichon homolog 2 (CNIH-2) and many others. Several interactors were shown to affect biogenesis, AMPAR trafficking, and channel properties, alone or in distinct assemblies, and several revealed preferred binding to specific AMPAR subunits. To date, a systematic specific interactome analysis of the major GluA1/2 and GluA2/3 AMPAR subtypes separately is lacking. To reveal interactors belonging to specific AMPAR subcomplexes, we performed both expression and interaction proteomics on hippocampi of wildtype and Gria1- or Gria3 knock-out mice. Whereas GluA1/2 receptors co-purified TARP-γ8, synapse differentiation-induced protein 4 (SynDIG4, also known as Prrt1) and CNIH-2 with highest abundances, GluA2/3 receptors revealed strongest co-purification of CNIH-2, TARP-γ2, and Noelin1 (or Olfactomedin-1). Further analysis revealed that TARP-γ8-SynDIG4 interact directly and co-assemble into an AMPAR subcomplex especially at synaptic sites. Together, these data provide a framework for further functional analysis into AMPAR subtype specific pathways in health and disease.


Assuntos
Proteômica , Receptores de AMPA , Animais , Camundongos , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Plasticidade Neuronal/fisiologia , Hipocampo/metabolismo , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA