Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11714, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474666

RESUMO

The year of 2020 was profoundly marked by a global pandemic caused by a strain of coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19). To control disease spread, a key strategy adopted by many countries was the regular testing of individuals for infection. This led to the rapid development of diagnostic testing technologies. In Norway, within a week, our group developed a test kit to quickly isolate viral RNA and safely detect SARS-CoV-2 infection with sensitivity comparable to available kits. Herein, the procedure employed for the detection of SARS-CoV-2 in swab samples from patients using the NTNU-COVID-19 test kit is described in detail. This procedure, based on NAxtra magnetic nanoparticles and an optimized nucleic acid extraction procedure, is robust, reliable, and straightforward, providing high-quality nucleic acids within 14 min. The NAxtra protocol is adaptable and was further validated for extraction of DNA and RNA from other types of viruses. A comparison of the protocol on different liquid handling systems is also presented. Due to the simplicity and low cost of this method, implementation of this technology to diagnose virus infections on a clinical setting would benefit health care systems, promoting sustainability.


Assuntos
COVID-19 , Nanopartículas de Magnetita , Ácidos Nucleicos , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Teste para COVID-19 , RNA Viral/genética , Sensibilidade e Especificidade
2.
Sci Rep ; 12(1): 20736, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456579

RESUMO

We have in this paper investigated how water sorbs to cellulose. We found that both cellulose nanofibril (CNF) and cellulose nanocrystal (CNC) films swell similarly, as they are both mainly composed of cellulose. CNF/CNC films subjected to water at 0.018 kg/m3 at 25 °C and 39 °C, showed a decrease in swelling from ~ 8 to 2%. This deswelling increased the tensile index of CNF-films by ~ 13%. By molecular modeling of fibril swelling, we found that water sorbed to cellulose exhibits a decreased diffusion constant compared to bulk water. We quantified this change and showed that diffusion of sorbed water displays less dependency on swelling temperature compared to bulk water diffusion. To our knowledge, this has not previously been demonstrated by molecular modeling. The difference between bulk water diffusion (DWW) and diffusion of water sorbed to cellulose (DCC) increased from DWW - DCC ~ 3 × 10-5 cm/s2 at 25 °C to DWW - DCC ~ 8.3 × 10-5 cm/s2 at 100 °C. Moreover, water molecules spent less successive time sorbed to a fibril at higher temperatures.


Assuntos
Celulose , Água , Humanos , Temperatura , Difusão , Edema
3.
Biopolymers ; 113(9): e23520, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35751883

RESUMO

The redeposition of lignin to the fiber surface after organosolv pretreatment was studied using two different reactor types. Results from the conventional autoclave reactor suggest that redeposition occurs during the cooling down stage. Redeposited particles appeared to be spherical in shape. The size and population density of the particles depends on the concentration of organosolv lignin in the cooking liquor, which is consistent with the hypothesis that reprecipitation of lignin occurs when the system is cooled down. The use of a displacement reactor showed that displacing the spent cooking liquor with fresh cooking liquor helps in reducing the redeposition and the inclusion of a washing stage with fresh cooking liquor reduced the reprecipitation of lignin, particularly on the outer fiber surfaces. Redeposition of lignin was still observed on regions that were less accessible to washing liquid, such as fiber lumens, suggesting that complete prevention of redeposition was not achieved.


Assuntos
Lignina , Hidrólise , Lignina/química
4.
Sci Rep ; 10(1): 15213, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938987

RESUMO

In this study a range of factors influencing the fabrication of single-cell arrays (SCAs) are identified and investigated. Micro-contact printing was used to introduce spots coated with polyethyleneimine or Matrigel on glass surfaces pre-coated with polyethylene glycol. Unmodified E. coli, Synechococcus sp., Chlamydomonas reinhardtii as well as diverse mammalian cells including HUVEC, AAV293, U87, OHS, PC3, SW480, HepG2 and AY-27 were successfully immobilised onto the chemically coated spots. The developed SCAs show high cell viability and probability for capturing single-cells. A discrepancy between the size and shape of the squares described in the design file and the actual structures obtained in the final PDMS structure is characterised and quantified. The discrepancy is found to be depending on the exposure energy used in the photolithography process as well as the size of the squares and their separation distance as detailed in the design file. In addition to these factors, the effect of the cell density loaded onto the patterned surfaces is also characterised. The systematic characterisation of key parameters that need to be optimised prior to the fabrication of SCAs is essential in order to increase the efficiency and reproducibility of future fabrication of SCAs for single-cell studies.


Assuntos
Chlamydomonas reinhardtii/crescimento & desenvolvimento , Escherichia coli/crescimento & desenvolvimento , Impressão Tridimensional/instrumentação , Análise de Célula Única/métodos , Synechococcus/crescimento & desenvolvimento , Sobrevivência Celular , Desenho de Equipamento , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Polietilenoglicóis/química , Polietilenoimina/química , Propriedades de Superfície
5.
PLoS One ; 10(6): e0128162, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26039378

RESUMO

In this paper we demonstrate a procedure for preparing bacterial arrays that is fast, easy, and applicable in a standard molecular biology laboratory. Microcontact printing is used to deposit chemicals promoting bacterial adherence in predefined positions on glass surfaces coated with polymers known for their resistance to bacterial adhesion. Highly ordered arrays of immobilized bacteria were obtained using microcontact printed islands of polydopamine (PD) on glass surfaces coated with the antiadhesive polymer polyethylene glycol (PEG). On such PEG-coated glass surfaces, bacteria were attached to 97 to 100% of the PD islands, 21 to 62% of which were occupied by a single bacterium. A viability test revealed that 99% of the bacteria were alive following immobilization onto patterned surfaces. Time series imaging of bacteria on such arrays revealed that the attached bacteria both divided and expressed green fluorescent protein, both of which indicates that this method of patterning of bacteria is a suitable method for single-cell analysis.


Assuntos
Análise em Microsséries/instrumentação , Pseudomonas putida/citologia , Análise de Célula Única/métodos , Aderência Bacteriana , Contagem de Células , Células Imobilizadas/citologia , Dimetilpolisiloxanos/química , Desenho de Equipamento , Vidro/química , Viabilidade Microbiana , Microscopia de Força Atômica , Microscopia de Fluorescência , Polietilenoglicóis/química , Pontos Quânticos/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...