Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Process Res Dev ; 28(4): 1089-1101, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38660378

RESUMO

A digital design tool that can transfer material property information between unit operations to predict the product attributes in integrated purification processes has been developed to facilitate end-to-end integrated pharmaceutical manufacturing. This work aims to combine filtration and washing operations frequently using active pharmaceutical ingredient (API) isolation. This is achieved by coupling predicted and experimental data produced during the upstream crystallization process. To reduce impurities in the isolated cake, a mechanistic model-based workflow was used to optimize an integrated filtration and washing process model. The Carman-Kozeny filtration model has been combined with a custom washing model that incorporates diffusion and axial dispersion mechanisms. The developed model and approach were applied to two systems, namely, mefenamic acid and paracetamol, which are representative compounds, and various crystallization and wash solvents and related impurities were used. The custom washing model provides a detailed evolution of species concentration during washing, simulating the washing curve with the three stages of the wash curve: constant rate, intermediate stage, and diffusion stage. A model validation approach was used to estimate cake properties (e.g., specific cake resistance, cake volume, cake composition after washing, and washing curve). A global systems analysis was conducted by using the calibrated model to explore the design space and aid in the setup of the optimization decision variables. Qualitative optimization was performed in order to reduce the concentration of impurities in the final cake after washing. The findings of this work were translated into a final model to simulate the optimal isolation conditions.

2.
Org Process Res Dev ; 26(12): 3236-3253, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36569418

RESUMO

To facilitate integrated end-to-end pharmaceutical manufacturing using digital design, a model capable of transferring material property information between operations to predict product attributes in integrated purification processes has been developed. The focus of the work reported here combines filtration and washing operations used in active pharmaceutical ingredient (API) purification and isolation to predict isolation performance without the need of extensive experimental work. A fixed Carman-Kozeny filtration model is integrated with several washing mechanisms (displacement, dilution, and axial dispersion). Two limiting cases are considered: case 1 where there is no change in the solid phase during isolation (no particle dissolution and/or growth), and case 2 where the liquid and solid phases are equilibrated over the course of isolation. In reality, all actual manufacturing conditions would be bracketed by these two limiting cases, so consideration of these two scenarios provides rigorous theoretical bounds for assessing isolation performance. This modeling approach aims to facilitate the selection of most appropriate models suitable for different isolation scenarios, without the requirement to use overly complex models for straightforward isolation processes. Mefenamic acid and paracetamol were selected as representative model compounds to assess a range of isolation scenarios. In each case, the objective of the models was to identify the purity of the product reached with a fixed wash ratio and minimize the changes to the crystalline particle attributes that occur during the isolation process. This was undertaken with the aim of identifying suitable criteria for the selection of appropriate filtration and washing models corresponding to relevant processing conditions, and ultimately developing guidelines for the digital design of filtration and washing processes.

3.
Org Process Res Dev ; 26(1): 97-110, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35095259

RESUMO

Washing is a key step in pharmaceutical isolation to remove unwanted crystallization solvents and dissolved impurities (mother liquor) from the active pharmaceutical ingredient (API) filter cake to ensure the purity of the product whilst maximizing yield. It is therefore essential to avoid both product dissolution and impurity precipitation during washing, especially precipitation of impurities caused by the wash solvent acting as an antisolvent, affecting purity and causing agglomerate formation. This work investigates the wash solvent flow through a saturated filter cake to optimize washing by displacement, taking account of diffusional mechanisms and manipulating the wash contact time. Constant rate filtration/washing is employed in this study using readily available laboratory equipment. One advantage of using constant rate filtration in this work is that it allows for the collection of separate aliquots during all stages of filtration, washing, and deliquoring of the API cake. This enables a wash profile to be obtained, as well as providing an overall picture on the mass of API lost during isolation and so can assist in optimizing the washing strategy. Particle size analysis of damp cake obtained straight after washing is also performed using laser diffraction. This allowed for agglomerate formation caused during washing to be distinguished from agglomeration that would be caused by subsequent drying of the wet filter cake. This work aims at improving pharmaceutical product quality, increasing sustainability, and reducing manufacturing cost.

4.
Org Process Res Dev ; 25(5): 1143-1159, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34295140

RESUMO

A predictive tool was developed to aid process design and to rationally select optimal solvents for isolation of active pharmaceutical ingredients. The objective was to minimize the experimental work required to design a purification process by (i) starting from a rationally selected crystallization solvent based on maximizing yield and minimizing solvent consumption (with the constraint of maintaining a suspension density which allows crystal suspension); (ii) for the crystallization solvent identified from step 1, a list of potential isolation solvents (selected based on a series of constraints) is ranked, based on thermodynamic consideration of yield and predicted purity using a mass balance model; and (iii) the most promising of the predicted combinations is verified experimentally, and the process conditions are adjusted to maximize impurity removal and maximize yield, taking into account mass transport and kinetic considerations. Here, we present a solvent selection workflow based on logical solvent ranking supported by solubility predictions, coupled with digital tools to transfer material property information between operations to predict the optimal purification strategy. This approach addresses isolation, preserving the particle attributes generated during crystallization, taking account of the risks of product precipitation and particle dissolution during washing, and the selection of solvents, which are favorable for drying.

5.
Org Process Res Dev ; 25(4): 969-981, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33897252

RESUMO

Washing is a key step in pharmaceutical isolation to remove the unwanted crystallization solvent (mother liquor) from the active pharmaceutical ingredient (API) filter cake. This study looks at strategies for optimal wash solvent selection, which minimizes the dissolution of API product crystals while preventing the precipitation of product or impurities. Selection of wash solvents to avoid both these phenomena can be challenging but is essential to maintain the yield, purity, and particle characteristics throughout the isolation process. An anti-solvent screening methodology has been developed to quantitatively evaluate the propensity for precipitation of APIs and their impurities of synthesis during washing. This is illustrated using paracetamol (PCM) and two typical impurities of synthesis during the washing process. The solubility of PCM in different binary wash solutions was measured to provide a basis for wash solvent selection. A map of wash solution composition boundaries for precipitation for the systems investigated was developed to depict where anti-solvent phenomena will take place. For some crystallization and wash solvent combinations investigated, as much as 90% of the dissolved PCM and over 10% of impurities present in the PCM saturated mother liquor were found to precipitate out. Such levels of uncontrolled crystallization during washing in a pharmaceutical isolation process can have a drastic effect on the final product purity. Precipitation of both the product and impurities from the mother liquor can be avoided by using a solvent in which the API has a solubility similar to that in the mother liquor; for example, the use of acetonitrile as a wash solvent does not result in precipitation of either the PCM API or its impurities. However, the high solubility of PCM in acetonitrile would result in noticeable dissolution of API during washing and would lead to agglomeration during the subsequent drying step. Contrarily, the use of n-heptane as a wash solvent for a PCM crystal slurry resulted in the highest amount of precipitation among the solvent pairs evaluated. This can be mitigated by designing a multi-stage washing strategy where wash solutions of differing wash solvent concentrations are used to minimize step changes in solubility when the mother liquor and the wash solvent come into contact.

6.
Org Process Res Dev ; 24(11): 2505-2520, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33250628

RESUMO

Developing a continuous isolation process to produce a pure, dry, free-flowing active pharmaceutical ingredient (API) is the final barrier to the implementation of continuous end-to-end pharmaceutical manufacturing. Recent work has led to the development of continuous filtration and washing prototypes for pharmaceutical process development and small-scale manufacture. Here, we address the challenge of static drying of a solvent-wet crystalline API in a fixed bed to facilitate the design of a continuous filter dryer for pharmaceutical development, without excessive particle breakage or the formation of interparticle bridges leading to lump formation. We demonstrate the feasibility of drying small batches on a time scale suitable for continuous manufacturing, complemented by the development of a drying model that provides a design tool for process development. We also evaluate the impact of alternative washing and drying approaches on particle agglomeration. We conclude that our approach yields effective technology, with a performance that is amenable to predictive modeling.

7.
Org Process Res Dev ; 24(4): 520-539, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32336906

RESUMO

A key challenge during the transition from laboratory/small batch to continuous manufacturing is the development of a process strategy that can easily be adopted for a larger batch/continuous process. Industrial practice is to develop the isolation strategy for a new drug/process in batch using the design of experiment (DoE) approach to determine the best isolation conditions and then transfer the isolation parameters selected to a large batch equipment/continuous isolation process. This stage requires a series of extra investigations to evaluate the effect of different equipment geometry or even the adaptation of the parameters selected to a different isolation mechanism (e.g., from dead end to cross flow filtration) with a consequent increase of R&D cost and time along with an increase in material consumption. The CFD25 is an isolation device used in the first instance to develop an isolation strategy in batch (optimization mode) using a screening DoE approach and to then verify the transferability of the strategy to a semicontinuous process (production mode). A d-optimal screening DoE was used to determine the effect of varying the input slurry. Properties such as solid loading, particle size distribution, and crystallization solvent were investigated to determine their impact on the filtration and washing performance and the characteristics of the dry isolated product. A series of crystallization (ethanol, isopropanol, and 3-methylbutan-1-ol) and wash solvents (n-heptane, isopropyl acetate and n-dodcane) were used for the process. To mimic a real isolation process, paracetamol-related impurities, acetanilide and metacetamol, were dissolved in the mother liquor. The selected batch isolation strategy was used for the semicontinuous isolation run. Throughput and filtration parameters, such as cake resistance and flow rate, cake residual liquid content and composition, cake purity, particle-particle aggregation, and extent and strength of agglomerates, were measured to evaluate the consistency of the isolated product produced during a continuous experiment and compared with the isolated product properties obtained during the batch process development. Overall, the CFD25 is a versatile tool which allows both new chemical entity process development in batch and the production of the active pharmaceutical ingredient in semicontinuous mode using the same process parameters without changing equipment. The isolated product properties gained during the semicontinuous run are overall comparable between samples. The residual solvent content and composition differs between some samples due to filter plate blockage. In general, the mean properties obtained during semicontinuous running are comparable with the product properties simulated using the DoE.

8.
J Pharm Sci ; 108(1): 372-381, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30009797

RESUMO

The lack of a commercial laboratory, pilot and small manufacturing scale dead end continuous filtration and drying unit it is a significant gap in the development of continuous pharmaceutical manufacturing processes for new active pharmaceutical ingredients (APIs). To move small-scale pharmaceutical isolation forward from traditional batch Nutsche filtration to continuous processing a continuous filter dryer prototype unit (CFD20) was developed in collaboration with Alconbury Weston Ltd. The performance of the prototype was evaluated by comparison with manual best practice exemplified using a modified Biotage VacMaster unit to gather data and process understanding for API filtration and washing. The ultimate objective was to link the chemical and physical attributes of an API slurry with equipment and processing parameters to improve API isolation processes. Filtration performance was characterized by assessing filtrate flow rate by application of Darcy's law, the impact on product crystal size distribution and product purity were investigated using classical analytical methods. The overall performance of the 2 units was similar, showing that the prototype CFD20 can match best manual lab practice for filtration and washing while allowing continuous processing and real-time data logging. This result is encouraging and the data gathered provides further insight to inform the development of CFD20.


Assuntos
Filtração/métodos , Preparações Farmacêuticas/química , Tecnologia Farmacêutica/métodos , Indústria Farmacêutica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...