Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
FASEB J ; 38(13): e23744, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885031

RESUMO

The hypothalamic-pituitary-gonadal axis (HPG) is the key neuroendocrine axis involved in reproductive regulation. Brain and muscle ARNT-like protein 1 (Bmal1) participates in regulating the metabolism of various endocrine hormones. However, the regulation of Bmal1 on HPG and female fertility is unclear. This study aims to explore the regulation of female reproduction by Bmal1 via the HPG axis in mice. Bmal1-knockout (Ko) mice were generated using the CRISPR/Cas9 technology. The structure, function, and estrous cycle of ovarian in Bmal1 Ko female mice were measured. The key genes and proteins of the HPG axis involved in regulating female reproduction were examined through transcriptome analysis and then verified by RT-PCR, immunohistochemistry, and western blot. Furthermore, the fertility of female mice was detected after intervening prolactin (PRL) and progesterone (Pg) in Bmal1 ko mice. The number of offspring and ovarian weight were significantly lower in Bmal1-Ko mice than in wild-type (Wt) mice. In Bmal1-Ko mice, ovarian cells were arranged loosely and irregularly, and the total number of follicles was significantly reduced. No corpus luteum was found in the ovaries. Vaginal smears revealed that Bmal1-Ko mice had an irregular estrus cycle. In Bmal1-Ko mice, Star expression was decreased, PRL and luteinizing hormone (LH) levels were increased, and dopamine (DA) and Pg levels were decreased. Inhibition of PRL partially recovered the estrous cycle, corpus luteum formation, and Star expression in the ovaries. Pg supplementation promoted embryo implantation in Bmal1-Ko female mice. Bmal1 Ko increases serum PRL levels in female mice likely by reducing DA levels, thus affecting luteal formation, resulting in decreased Star expression and Pg production, hindering female reproduction. Inhibition of PRL or restoration of Pg can partially restore reproductive capacity in female Bmal1-Ko mice. Thus, Bmal1 may regulate female reproduction via the HPG axis in mice, suggesting that Bmal1 is a potential target to treat female infertility.


Assuntos
Fatores de Transcrição ARNTL , Sistema Hipotálamo-Hipofisário , Ovário , Reprodução , Animais , Feminino , Camundongos , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Ciclo Estral , Fertilidade , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovário/metabolismo , Progesterona/metabolismo , Prolactina/metabolismo
2.
Ann Transl Med ; 8(7): 429, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32395473

RESUMO

Novel coronavirus (2019-nCov) infection (COVID-19) rapidly spread across China and 25 countries in the worldwide, which infected not only adults but also children, even neonates. Each year, about 15 million newborns are delivered in China. Newborn screening (NBS) helps effectively prevent some mental retardation, premature death, and adverse outcomes in the early stage of baby, which could detect some inherited metabolic disorders (IMDs). During this COVID-19 epidemic, how to balance the risk of infected 2019-nCov and the risk of disability and teratogenesis of IMDs. Expert members of NBS extra quality assessment in National Clinical Center of Laboratory (NCCL) give a brief consensus for NBS of IMDs in the COVID-2019 epidemic, hoping that the brief consensus could be reference for NBS of IMDs in the other epidemic areas or periods all over the world.

3.
BMC Med Genet ; 21(1): 98, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393189

RESUMO

BACKGROUND: Glutaric acidemia type II (GA II) or multiple acyl-CoA dehydrogenase deficiency (MADD, OMIM 231680) is an inherited autosomal recessive disease affecting fatty acid, amino acid and choline metabolism, due to mutations in one of three genes namely, electron transfer flavoprotein alpha-subunit, ETFA, electron transfer flavoprotein ß-subunit, ETFB and electron transfer flavoprotein dehydrogenase, ETFDH. Currently, few studies have reported genetic profiling of neonatal-onset GA II. This study aimed to identify the genetic mutations in a Chinese family with GA II. CASE PRESENTATION: We reported a case of GA II with purulent meningitis and septicemia and identified a novel ETFDH gene mutation in a female infant. The patient developed an episode of hypoglycemia and hypotonicity on the postnatal first day. Laboratory investigations revealed elevations of multiple acylcarnitines indicating glutaric acidemia type II in newborn screening analysis. Urinary organic acids were evaluated for the confirmation and revealed a high glutaric acid excretion. Genetic analysis revealed two mutations in the ETFDH gene (c.623_626 del / c. 1399G > C), which were considered to be the etiology for the disease. The novel mutation c.623_626 del was identified in the proband infant and her father, her mother was carriers of the mutation c.1399G > C. CONCLUSIONS: A novel variant (c.623_626 del) and a previously reported missense (c.1399G > C) in the ETFDH gene have been identified in the family. The two variants of ETFDH gene identified probably underlie the pathogenesis of Glutaric acidemia type II in this family, and also enlarge ETFDH genotype-phenotype correlations spectrum.


Assuntos
Flavoproteínas Transferidoras de Elétrons/genética , Predisposição Genética para Doença , Proteínas Ferro-Enxofre/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Feminino , Estudos de Associação Genética , Genótipo , Heterozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Deficiência Múltipla de Acil Coenzima A Desidrogenase/fisiopatologia , Mutação
4.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 37(4): 367-372, 2020 Apr 10.
Artigo em Chinês | MEDLINE | ID: mdl-32219815

RESUMO

Follow-up is a crucial step for the screening of neonatal genetic and metabolic diseases, which can directly influence the detection, diagnosis, efficacy of treatment, as well as the quality of neonatal screening. In view of the lack of follow-up, full understanding, and inconsistent requirement between various agencies and personnel in China, there is an urgent need for standardization. The Committee for Proficiency Testing of the Neonatal Genetic Metabolic Disease Screening Center of the National Health Committee of China has organized the writing of expert consensus for follow-up of neonatal genetic and metabolic disease screening after thorough discussion, so as to guide the follow-up work and improve its quality.


Assuntos
Doenças Genéticas Inatas/diagnóstico , Doenças Metabólicas , Triagem Neonatal , China , Consenso , Seguimentos , Humanos , Recém-Nascido , Doenças Metabólicas/diagnóstico , Doenças Metabólicas/genética
5.
Hum Mutat ; 41(1): 212-221, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31489982

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common X-linked enzymopathies caused by G6PD gene variant. We aimed to provide the characteristics of G6PD deficiency and G6PD gene variant distribution in a large Chinese newborn screening population. We investigated the prevalence of G6PD in China from 2013 to 2017. Then, we examined G6PD activity and G6PD gene in representative Chinese birth cohort to explore the distribution of G6PD gene variant in 2016. We then performed multicolor melting curve analysis to classify G6PD gene variants in 10,357 neonates with activity-confirmed G6PD deficiency, and DNA Sanger sequencing for G6PD coding exons if hot site variants were not found. The screened population, organizations, and provinces of G6PD deficiency were increased from 2013 to 2017 in China. The top five frequency of G6PD gene variants were c.1376G>T, c.1388G>A, c.95A>G, c.1024C>T, and c.871G>A and varied in different provinces, with regional and ethnic features, and four pathogenic variant sites (c.152C>T, c.290A>T, c.697G>C, and c.1285A>G) were first reported. G6PD deficiency mainly occurs in South China, and the frequency of G6PD gene variant varies in different regions and ethnicities.


Assuntos
Variação Genética , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/genética , Triagem Neonatal , Alelos , China/epidemiologia , Mapeamento Cromossômico , Análise Mutacional de DNA/métodos , Feminino , Genes Ligados ao Cromossomo X , Glucosefosfato Desidrogenase/metabolismo , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Deficiência de Glucosefosfato Desidrogenase/história , História do Século XXI , Humanos , Incidência , Recém-Nascido , Masculino , Mutação , Triagem Neonatal/métodos , Triagem Neonatal/normas , Vigilância da População
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...