Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1309088, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617438

RESUMO

Electrostatic spraying technology can improve the efficiency of pesticide deposition on the surface of leaves and reduce the environmental pollution caused by pesticide drift, which has an important prospect in agricultural pesticide application. To improve the deposition and penetration of droplets in the crop canopy, we designed and optimized an air-assisted electrostatic nozzle and conducted the spraying performance experiment. Parameters, such as charge-to-mass ratio (CMR) and particle size, were tested and analyzed to obtain the suitable operating parameters of nozzle. The results proved that the improved air-assisted electrostatic nozzle has good atomization and chargeability. There is a good charging effect with a charging voltage of 3,000-5,000 V, the CMR increased 127.8% from 0.86 to 1.97 mC/kg as the charge voltage increases from 1,000 to 4,000 V, at an air pressure of 1.0 bar and liquid flow rate of 200 ml/min. Furthermore, we designed a multi-factor orthogonal experiment, which was conducted using a four-factor, three-level design to investigate the effects of operational parameters and canopy characteristics on droplet deposition and penetration. Analysis of variance (ANOVA) and F-test were performed on the experiment results. The results showed that the factor effect on droplet penetration, in descending order, was as follows: spray distance, leaf area index, air pressure, and air pressure × spray distance. The factor effect on abaxial leaf deposition, in descending order, was as follows: air pressure, spray distance, air pressure × charge voltage, spray distance × charge voltage, and charge voltage. For optimal droplet penetration and abaxial leaf deposition, option A 3 B 1 D 2 (air pressure 1.5 bar, spray distance 0.2 m, charge voltage 2,500 V) is recommend. The spray nozzle atomization performance and deposition regulation were studied by experimental methods to determine the optimal values of operating parameters to provide a reference for electrostatic spray system development.

2.
Front Plant Sci ; 14: 1265013, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868319

RESUMO

Agricultural chemicals are commonly used to control pests and weeds, but cause pesticide waste problems. Oil-based emulsions are often used as pesticide formulations to improve pesticide utilization. In this study, the spray visualization experiment of the water and oil-based emulsion butachlor is carried out using an ST flat fan nozzle at 0.1-0.5 MPa pressure. The dimensionless method is used to analyze the difference in liquid sheet fragmentation morphology and disintegration process and the influence of different fragmentation methods on droplet size. It is found that the hydrophobic components in pesticide have a significant effect on the morphology and process of atomization fragmentation. When spray liquid is water, the liquid sheet breaks up into liquid ligaments due to the Rayleigh instability, then the ligaments break up into droplets. The side view of a liquid sheet is a large-amplitude wave disturbance. When the spray liquid is the emulsion butachlor, holes are generated on the liquid sheet, then the holes break up into droplets. The fragmentation method of emulsion spray is the perforation mechanism. Compared with water spray, the presence of the pesticide butachlor increases the droplet size and spray angle and improves the uniformity of droplet size distribution but reduces the breakup length. The spray angle shows a power law dependence of the Weber number with a power of 0.17 for all conditions tested here. At 0.3 MPa, DV50 increases 25%, and span decreases from 1.187 to 1.172. This study could provide reference for the addition of agricultural additives, the improvement of spray operation efficiency, and the establishment of spray fragmentation mechanism.

3.
Front Plant Sci ; 14: 1184244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223814

RESUMO

Air-assisted spraying technology is widely used in orchard sprayers to disturb canopy leaves and force droplets into the plant canopy to reduce droplet drift and increase spray penetration. A low-flow air-assisted sprayer was developed based on a self-designed air-assisted nozzle. The effects of the sprayer speed, spray distance, and nozzle arrangement angle on the deposit coverage, spray penetration, and deposit distribution were investigated in a vineyard by means of orthogonal tests. The optimal working conditions for the low-flow air-assisted sprayer working in the vineyard were determined as a sprayer speed of 0.65m/s, a spray distance of 0.9m, and a nozzle arrangement angle of 20°. The deposit coverages of the proximal canopy and intermediate canopy were 23.67% and 14.52%, respectively. The spray penetration was 0.3574. The variation coefficients of the deposit coverage of the proximal canopy and intermediate canopy, which indicate the uniformity of the deposition distribution, were 8.56% and 12.33%, respectively.

4.
Sensors (Basel) ; 19(5)2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823379

RESUMO

The authors wish to make the following correction to this paper [...].

5.
Sensors (Basel) ; 19(3)2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30696019

RESUMO

Rapid detection of spraying deposit can contribute to the precision application of plant protection products. In this study, a novel capacitor sensor system was implemented for measuring the spray deposit immediately after herbicide application. Herbicides with different formulations and nozzles in different mode types were included to test the impact on the capacitance of this system. The results showed that there was a linear relationship between the deposit mass and the digital voltage signals of the capacitance on the sensor surface with spray droplets. The linear models were similar for water and the spray mixtures with non-ionized herbicides usually in formulations of emulsifiable concentrates and suspension concentrates. However, the ionized herbicides in formulation of aqueous solutions presented a unique linear model. With this novel sensor, it is possible to monitor the deposit mass in real-time shortly after the pesticide application. This will contribute to the precision application of plant protection chemicals in the fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...