Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 12: 894043, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898871

RESUMO

Background: Forkhead box S1 (FOXS1) is a member of the forkhead box (FOX) transcriptional factor superfamily. The biological roles and underlying regulatory mechanism of FOXS1 in CRC remain unclear. Methods: Bioinformatics analysis, Western blotting, real-time PCR, and immunohistochemistry (IHC) were used to detect the expression FOXS1 in CRC. MTT assay, transwell assay, human umbilical vein endothelial cell tube formation assay, and chicken chorioallantoic membrane assay were performed to investigate the effects of FOXS1 on proliferation, invasion, and angiogenesis. Additionally, tumor formation assay and orthotopic implantation assay were used to investigate the effects of FOXS1 on tumor growth and metastasis in vivo. Furthermore, gene set enrichment analysis (GSEA) was used to analyze the correlation between FOXS1 and EMT or angiogenesis. The correlation between FOXS1 and CXCL8 expression was analyzed in clinical CRC samples using IHC. Results: The results showed that FOXS1 expression was upregulated in CRC tissues compared with adjacent normal intestine tissues. A high FOXS1 expression is positively correlated with poor survival. FOXS1 promoted the malignant behavior of CRC cancer cells in vitro, including proliferation, invasion, and angiogenesis. In addition, FOXS1 promoted tumor growth and metastasis in nude mice. Mechanistically, FOXS1 upregulated the expression of C-X-C motif chemokine ligand 8 (CXCL8) at the transcriptional level. Knockdown of CXCL8 blocked FOXS1 induced the enhancement of the EMT and angiogenesis. GSEAs in public CRC datasets revealed strong correlations between FOXS1 expression and EMT marker and angiogenesis markers. IHC showed that FOXS1 expression was positively correlated with CXCL8 expression and CD31 expression in clinical CRC samples. Conclusion: The results suggest that FOXS1 promotes angiogenesis and metastasis by upregulating CXCL8 in CRC. Interference with the FOXS1/CXCL8 axis may serve as a potential therapeutic target for the treatment of metastatic CRC.

3.
J Exp Clin Cancer Res ; 40(1): 304, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34583750

RESUMO

BACKGROUND: Tumor-associated macrophages (TAMs) are key regulators of the complex interplay between cancer and the immune microenvironment. Tumor cell-derived spondin 2 (SPON2) is an extracellular matrix glycoprotein that has complicated roles in recruitment of macrophages and neutrophils during inflammation. Overexpression of SPON2 has been shown to promote tumor cell migration in colorectal cancer (CRC). However, the mechanism by which SPON2 regulates the accumulation of TAMs in the tumor microenvironment (TME) of CRC is unknown. METHODS: Immunohistochemistry was used to examine SPON2 expression in clinical CRC tissues. In vitro migration assays, transendothelial migration assays (iTEM), and cell adhesion assays were used to investigate the effects of SPON2 on monocyte/macrophage migration. Subcutaneous tumor formation and orthotopic implantation assays were performed in C57 BL/6 mice to confirm the effects of SPON2 on TAM infiltration in tumors. RESULTS: SPON2 expression is positively correlated with M2-TAM infiltration in clinical CRC tumors and poor prognosis of CRC patients. In addition, SPON2 promotes cytoskeletal remodeling and transendothelial migration of monocytes by activating integrin ß1/PYK2 axis. SPON2 may indirectly induce M2-polarization through upregulating cytokines including IL10, CCL2 and CSF1 expression in tumor cells. Blocking M2 polarization and Macrophage depletion inhibited the SPON2-induced tumors growth and invasion. Furthermore, blocking the SPON2/integrin ß1/PYK2 axis impairs the transendothelial migration of monocytes and cancer-promoting functions of TAMs in vivo. CONCLUSIONS: Our findings demonstrate that SPON2-driven M2-TAM infiltration plays an important role during CRC tumor growth and metastasis. SPON2 may be a valuable biomarker guiding the use of macrophage-targeting strategies and a potential therapeutic target in advanced CRC.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/patologia , Proteínas da Matriz Extracelular/metabolismo , Quinase 2 de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/secundário , Proteínas de Neoplasias/metabolismo , Macrófagos Associados a Tumor/imunologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Proteínas da Matriz Extracelular/genética , Feminino , Quinase 2 de Adesão Focal/genética , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/genética , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
EMBO Mol Med ; 11(12): e10638, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31657150

RESUMO

Resistance to tamoxifen is a clinically major challenge in breast cancer treatment. Although downregulation of estrogen receptor-alpha (ERα) is the dominant mechanism of tamoxifen resistance, the reason for ERα decrease during tamoxifen therapy remains elusive. Herein, we reported that Spalt-like transcription factor 2 (SALL2) expression was significantly reduced during tamoxifen therapy through transcription profiling analysis of 9 paired primary pre-tamoxifen-treated and relapsed tamoxifen-resistant breast cancer tissues. SALL2 transcriptionally upregulated ESR1 and PTEN through directly binding to the DNA promoters. By contrast, silencing SALL2 induced downregulation of ERα and PTEN and activated the Akt/mTOR signaling, resulting in estrogen-independent growth and tamoxifen resistance in ERα-positive breast cancer. Furthermore, hypermethylation of SALL2 promoter was found in tamoxifen-resistant breast cancer. Importantly, in vivo experiments showed that DNA methyltransferase inhibitor-mediated SALL2 restoration resensitized tamoxifen-resistant breast cancer to tamoxifen therapy. These findings shed light on the mechanism of SALL2 in regulation of ER and represent a potential clinical signature that can be used to categorize breast cancer patients who may benefit from co-therapy with tamoxifen and DNMT inhibitor.


Assuntos
Neoplasias da Mama/genética , Proteínas de Ligação a DNA/genética , Tamoxifeno/farmacologia , Fatores de Transcrição/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Epigenômica/métodos , Receptor alfa de Estrogênio/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Regiões Promotoras Genéticas/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
5.
Cancer Lett ; 428: 1-11, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29660380

RESUMO

Jade family PHD finger 3 (JADE3) plays a role in inducing histone acetylation during transcription, and is involved in the progression of several human cancers; however, its role in colon cancer remains unclear. Herein, we found that JADE3 was markedly upregulated in colon cancer tissues and significantly correlated with cancer progression, and predicted shorter patient survival. Further, JADE3 was expressed much higher in colon cancer cell lines that are enriched with a stem-like signature. Overexpression of JADE3 increased, while silencing JADE3 reduced cancer stem cell-like traits in colon cancer cells in vitro and in vivo. Importantly, silencing of JADE3 strongly impaired the tumor initiating capacity of colon cancer cells in vivo. Furthermore, JADE3 interacted with the promoters of colon stem cell marker LGR5 and activated its transcription, by increasing the occupancy of p300 acetyltransferase and histone acetylation on the promoters. Finally, we found that JADE3 expression was substantially induced by Wnt/ß-catenin signaling. These findings suggest an oncogenic role of JADE3 by regulating cancer stem cell-like traits in the colon cancer, and therefore JADE3 might be a potential therapeutic target for the treatment of colon cancer.


Assuntos
Carcinogênese/patologia , Neoplasias do Colo/patologia , Células-Tronco Neoplásicas/patologia , Proteínas Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias do Colo/genética , Neoplasias do Colo/mortalidade , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Proteínas Oncogênicas/genética , Dedos de Zinco PHD , Prognóstico , Regiões Promotoras Genéticas/genética , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Análise de Sobrevida , Regulação para Cima , Via de Sinalização Wnt , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...