Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Mol Med ; 17(4): 508-17, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23480786

RESUMO

Articular cartilage is an avascular tissue with poor regenerative capacity following injury, a contributing factor to joint degenerative disease. Cell-based therapies for cartilage tissue regeneration have rapidly advanced; however, expansion of autologous chondrocytes in vitro using standard methods causes 'dedifferentiation' into fibroblastic cells. Mitogen-activated protein kinase (MAPK) signalling is crucial for chondrocyte metabolism and matrix production, and changes in MAPK signals can affect the phenotype of cultured cells. We investigated the effects of inhibition of MAPK signalling on chondrocyte dedifferentiation during monolayer culture. Blockade of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signalling caused a significant increase in cartilage gene expression, however, also caused up-regulation of fibrotic gene expression. Inhibition of p38 MAPK (p38) caused a significant up-regulation of collagen type II while suppressing collagen type I expression. P38 inhibition also resulted in consistently more organized secretion of collagen type II protein deposits on cell culture surfaces. Follow-on pellet culture of treated cells revealed that MAPK inhibition reduced cell migration from the pellet. ERK and JNK inhibition caused more collagen type I accumulation in pellets versus controls while p38 inhibition strongly promoted collagen type II accumulation with no effect on collagen type I. Blockade of all three MAPKs caused increased GAG content in pellets. These results indicate a role for MAPK signalling in chondrocyte phenotype loss during monolayer culture, with a strong contribution from p38 signalling. Thus, blockade of p38 enhances chondrocyte phenotype in monolayer culture and may promote more efficient cartilage tissue regeneration for cell-based therapies.


Assuntos
Cartilagem Articular/citologia , Condrócitos/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Animais , Antracenos/farmacologia , Bovinos , Desdiferenciação Celular , Proliferação de Células , Sobrevivência Celular , Condrogênese , Matriz Extracelular/metabolismo , Flavonoides/farmacologia , Expressão Gênica , Glicosaminoglicanos/metabolismo , Imidazóis/farmacologia , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fenótipo , Cultura Primária de Células , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
2.
PLoS Genet ; 8(6): e1002751, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22685420

RESUMO

MicroRNAs (miRNAs) play important roles in normal cellular differentiation and oncogenesis. microRNA93 (mir-93), a member of the mir106b-25 cluster, located in intron 13 of the MCM7 gene, although frequently overexpressed in human malignancies may also function as a tumor suppressor gene. Using a series of breast cancer cell lines representing different stages of differentiation and mouse xenograft models, we demonstrate that mir-93 modulates the fate of breast cancer stem cells (BCSCs) by regulating their proliferation and differentiation states. In "claudin(low)" SUM159 cells, expression of mir-93 induces Mesenchymal-Epithelial Transition (MET) associated with downregulation of TGFß signaling and downregulates multiple stem cell regulatory genes, including JAK1, STAT3, AKT3, SOX4, EZH1, and HMGA2, resulting in cancer stem cell (CSC) depletion. Enforced expression of mir-93 completely blocks tumor development in mammary fat pads and development of metastases following intracardiac injection in mouse xenografts. The effect of mir-93 on the CSC population is dependent on the cellular differentiation state, with mir-93 expression increasing the CSC population in MCF7 cells that display a more differentiated "luminal" phenotype. mir-93 also regulates the proliferation and differentiation of normal breast stem cells isolated from reduction mammoplasties. These studies demonstrate that miRNAs can regulate the states and fates of normal and malignant mammary stem cells, findings which have important biological and clinical implications.


Assuntos
Neoplasias da Mama/genética , Diferenciação Celular/genética , Transformação Celular Neoplásica , MicroRNAs/genética , Células-Tronco Neoplásicas , Animais , Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Proteínas de Ligação a DNA/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Glândulas Mamárias Humanas/metabolismo , Camundongos , MicroRNAs/metabolismo , Componente 7 do Complexo de Manutenção de Minicromossomo , Neoplasias Experimentais , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Proteínas Nucleares/genética
3.
Cancer Res ; 71(2): 614-24, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21224357

RESUMO

We have used in vitro and mouse xenograft models to examine the interaction between breast cancer stem cells (CSC) and bone marrow-derived mesenchymal stem cells (MSC). We show that both of these cell populations are organized in a cellular hierarchy in which primitive aldehyde dehydrogenase expressing mesenchymal cells regulate breast CSCs through cytokine loops involving IL6 and CXCL7. In NOD/SCID mice, labeled MSCs introduced into the tibia traffic to sites of growing breast tumor xenografts where they accelerated tumor growth by increasing the breast CSC population. With immunochemistry, we identified MSC-CSC niches in these tumor xenografts as well as in frozen sections from primary human breast cancers. Bone marrow-derived MSCs may accelerate human breast tumor growth by generating cytokine networks that regulate the CSC population.


Assuntos
Neoplasias da Mama/patologia , Comunicação Celular/fisiologia , Citocinas/metabolismo , Células-Tronco Mesenquimais/patologia , Células-Tronco Neoplásicas/patologia , Aldeído Desidrogenase/análise , Aldeído Desidrogenase/biossíntese , Animais , Células da Medula Óssea/citologia , Neoplasias da Mama/enzimologia , Neoplasias da Mama/metabolismo , Feminino , Humanos , Células-Tronco Mesenquimais/enzimologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/metabolismo , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...