Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 170: 112754, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316001

RESUMO

The grape quality might be affected if the solar intensity (SI) was too strong. In this study, the influence of light-exclusive films on the transcriptomic properties and metabolic substances of grapes were evaluated. The results showed that films, especially polycarbonate (PC), could significantly decrease the SI. The sugar content was obviously decreased, while the acid content was increased. The anthocyanin content was decreased, in contrast to the total polyphenols, flavonoids and tannins. The corresponding derivatives owned the same trend. Lots of differentially expressed genes (DEGs) were detected, especially under PC. The expression pattern and GO function enrichment of DEGs from PC significantly differed from other groups. DEGs enrichment also proved that films, especially PC, could significantly improve the contents of tannins, flavonoids and other polyphenols. VvUFGT, VvF3'5'H, VvLDOX, VvLAR1 and VvANR were confirmed to be the key genes in the biosynthetic pathway of polyphenols under different films.


Assuntos
Polifenóis , Vitis , Vitis/genética , Transcriptoma , Flavonoides , Taninos
2.
Life Sci ; 314: 121355, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596407

RESUMO

AIMS: This study mainly evaluated the protective mechanism of histidine against the hepatic oxidative stress after high-salt exposure (HSE) through combined analysis of non-targeted metabolomics and biological metabolic networks. MATERIALS AND METHODS: Dahl salt-sensitive (SS) rats were fed with normal-salt diet or HSE ± histidine in addition to drinking water for 14 days. Gas chromatography-mass spectrometry was used to analyze the hepatic metabolites. The metabolic profile was analyzed by SIMCA-14.1, the metabolic correlation network was performed using Gephi-0.9.2, and pathway enrichment was analyzed using MetaboAnalyst 5.0 online website. KEY FINDINGS: Results indicated that HSE disturbed the hepatic metabolic profile, generated abnormal liver metabolism and exacerbated oxidative stress. Histidine supplementation significantly reversed the hepatic metabolic profile. Of note, 14 differential metabolic pathways were enriched after histidine supplementation, most of which played an important role in ameliorating redox and nitric oxide (NO) metabolism. Histidine administration decreased the levels of hydroperoxide and malondialdehyde, and increased the activities of antioxidant enzymes (Catalase, Superoxide Dismutase, Glutathione S-transferase and Glutathione reductases). Histidine effectively enhanced the endogenous synthesis of glutathione by increasing the levels of glutamate and cysteine, thereby enhancing the antioxidant capacity of the glutathione system. After histidine administration, lysine, glutamate, and hypotaurine owned a higher metabolic centrality in the correlation network. In addition, histidine could also effectively increase the endogenous synthesis of NO by enhancing the L-arginine/NO pathway. SIGNIFICANCE: This study offers new insights into the metabolic mechanisms underlying the antioxidant protective effect of histidine on the liver.


Assuntos
Antioxidantes , Histidina , Estresse Oxidativo , Cloreto de Sódio na Dieta , Animais , Ratos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Suplementos Nutricionais , Glutamatos/farmacologia , Glutationa/metabolismo , Histidina/farmacologia , Histidina/metabolismo , Fígado/metabolismo , Metabolômica , Oxirredução , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta/efeitos adversos , Cloreto de Sódio na Dieta/metabolismo , Superóxido Dismutase/metabolismo
3.
Adv Sci (Weinh) ; 10(3): e2203788, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403210

RESUMO

Anti-PD(L)1 immunotherapy recently arises as an effective treatment against triple-negative breast cancer (TNBC) but is only applicable to a small portion of TNBC patients due to the low PD-L1 expression and the immunosuppressive tumor microenvironment (TME). To address these challenges, a multifunctional "drug-like" copolymer that possesses the auto-changeable upper critical solution temperature and the capacity of scavenging reduced nicotinamide adenine dinucleotide phosphate (NADPH) inside tumor cells is synthesized and employed to develop a hypoxia-targeted and BMS202 (small molecule antagonist of PD-1/PD-L1 interactions)-loaded nanomedicine (BMS202@HZP NPs), combining the anti-PD-L1 therapy and the low-dose radiotherapy (LDRT) against TNBC. In addition to the controlled release of BMS202 in the hypoxic TNBC, BMS202@HZP NPs benefit the LDRT by upregulating the pentose phosphate pathway (PPP, the primary cellular source for NADPH) of TME whereas scavenging the NADPH inside tumor cells. As a result, the BMS202@HZP NPs-mediated LDRT upregulate the PD-L1 expression of tumor to promote anti-PD-L1 therapy response while reprogramming the immunometabolism of TME to alleviate its immunosuppression. This innovative nanomedicine-mediated radio-immunometabolism regulation provides a promising strategy to reinforce the anti-PD-L1 therapy against TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , NADP/uso terapêutico , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/metabolismo , Nanomedicina , Microambiente Tumoral
4.
J Food Biochem ; 46(12): e14497, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36314446

RESUMO

Salt-induced hypertension is one of the major issues worldwide and one of the main factors involved in heart and kidney failure. The objective of this study was to investigate the potential role of Benincasa hispida extracts on high salt-induced hypertension in Dahl-salt sensitive (D-SS) rats and to find out the metabolic and biochemical pattern involved in the reduction of hypertension. Twenty-six Dahl salt-sensitive (D-SS) rats were selected and divided into four groups. The metabolic strategy was applied to test the extracts on salt-sensitive hypertension in kidney. Gas Chromatography-Mass spectrometry (GC-MS) was used to identify the potent biochemical profile in renal medulla and cortex of rat kidneys. The differential metabolites of cortex and medulla, enrichment analysis and pathway analysis were performed using metabolomics data. The GC-MS data revealed that 24 different antihypertensive metabolites was detected in renal cortex, while 16 were detected in renal medulla between different groups. The significantly metabolic pathways namely citrate cycle, glutathione metabolism, glycine, serine, and threonine metabolism, glyoxylate and dicarboxylate metabolism, glycerolipid metabolism, alanine, aspartate and glutamate metabolism in renal cortex and glycerolipid metabolism, pentose phosphate pathway, citrate cycle, glycolysis, glycerophospholipid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis in renal medulla were involved in the process of Hypertension. The results suggest that the extract mainly alter the metabolic pathways of amino acid in Dahl salt-sensitive rats and its antioxidant potential reduced the hypertension patterns of Salt-sensitive rat. The antihypertensive components malic acid, aspartic acid, and glycine of extract can be used as therapeutic drugs to protect kidneys from salt-induced hypertension. PRACTICAL APPLICATIONS: Hypertension is a multifactorial disease and one of the risk factors for heart and kidney failure. Benincasa hispida is a widely used vegetable in China, which belongs to the Cucurbitaceae family. Benincasa hispida (wax gourd) has been used in traditional Chinese medicine for the treatment of inflammation and hypertension. The Benincasa hispida contains many compounds such as amino acids, carbohydrates, volatile compounds, vitamins, and minerals. The amino acid present in the pulp of Benincasa hispida are ornithine, threonine, aspartate, glutamate, serine, glycine, proline, alanine, valine, cysteine, isoleucine, tyrosine, leucine, lysine, phenylalanine, histidine, arginine, and γ-aminobutyric acid. Our results showed that Benincasa hispida is one of the potent natural antioxidants and can maintain normal blood pressure in Dahl salt-sensitive rats (D-SS). In conclusion, the current results provide good theoretical basis for the development and research using Benincasa hispida as an effective natural antioxidant for hypertension.


Assuntos
Cucurbitaceae , Hipertensão , Insuficiência Renal , Ratos , Animais , Ratos Endogâmicos Dahl , Anti-Hipertensivos , Antioxidantes , Ácido Aspártico , Hipertensão/tratamento farmacológico , Hipertensão/etiologia , Cloreto de Sódio na Dieta/metabolismo , Cloreto de Sódio na Dieta/farmacologia , Cloreto de Sódio , Aminoácidos , Fenilalanina , Alanina , Glicina , Tirosina , Cucurbitaceae/metabolismo , Serina , Treonina , Extratos Vegetais/farmacologia
5.
Plant Foods Hum Nutr ; 77(3): 373-382, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35705768

RESUMO

Hypertension is one of the main factors of cardiovascular disease worldwide and is strongly related to the overall mortality. High salt intake is a major risk factors for hypertension. Identifying functional foods that can help prevent mechanistic abnormalities mediating salt-induced hypertension is an issue of considerable nutraceutical and scientific interest. Dietary Momordica charantia may be an alternative approach to avoid salt-induced hypertension. Dahl salt-sensitive (DSS) rats were used to determine whether Momordica charantia water extracts (ME) exerts anti-hypertensive effects in the present study. ME gavage could significantly prevented the increase of blood pressure, blood urea nitrogen, creatinine, and urine protein-to-creatinine ratio of DSS rats. Metabolomics analysis indicated that high-salt diet induced abnormal amino acid metabolism was related to nitric oxide (NO) deficiency, but ME gavage could upregulate the activities of nitric oxide synthase, aspartate aminotransferase, argininosuccinate lyase, argininosuccinate synthase and restore endogenous synthesis of arginine and NO. Meanwhile, renal function was improved after ME gavage. Citrulline, as one of the important component in ME, could attenuate salt-induced hypertension by increasing endogenous synthesis of arginine and NO. Antioxidants in ME, such as phenolic compound, may avoid high-salt induced oxidative stress in DSS rats, which may be another mechanism by which ME prevented blood pressure increase. Thus, the present study indicated that feeding Momordica charantia could avoid high-salt-induced hypertension in DSS rats.


Assuntos
Hipertensão , Momordica charantia , Animais , Arginina/efeitos adversos , Pressão Sanguínea , Creatinina , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Hipertensão/prevenção & controle , Medicina Tradicional Chinesa , Ratos , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta/efeitos adversos
6.
Biomater Adv ; 133: 112627, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35527153

RESUMO

Poly-amino acid (PAA) is a promising biomaterial in biomedical engineering due to its similar amide bond structure to collagen and excellent biocompatibility, but the lack of osteogenic activity and inferior mechanical strength limit its long-term application in orthopedics. In this study, a poly-amino acid/poly (p-benzamide) (PAA-PBA) copolymer with high mechanical strength was designed and fabricated by the method of solution polymerization. The chain structures, thermal properties and mechanical properties of these polymers were evaluated and results showed that PBA greatly promoted the mechanical properties of PAA, and the copolymer performed the maximum mechanical strengths with compressive strength, bending strength and tensile strength of 123 MPa, 107 MPa and, 95 MPa, respectively. To increase the bioactivity of surface, a bioactive coating that consists of poly-(dopamine) (PDA) nanolayers and tripeptide Arginine-Glycine-Aspartic acid (RGD) on sulfonated PAA-PBA copolymer was created. A porous structure appeared on the surface after modification, the surface roughness and hydrophilicity of copolymer has been improved obviously after introducing PDA and RGD peptide coating. The in vitro bioactivity evaluation demonstrated that the RGD-functionalized sample showed a significantly improved ability to promote bone apatite mineralization, cell adhesion, proliferation and osteogenic differentiation. In a word, such a strategy of material synthesis and surface modification method shows a great potential for broadening the use of PAA in the application of load-bearing bone substitute biomaterials.


Assuntos
Aminoácidos , Osteogênese , Aminoácidos/química , Benzamidas/farmacologia , Materiais Biocompatíveis/farmacologia , Oligopeptídeos/farmacologia , Polímeros/farmacologia
7.
Food Funct ; 13(2): 891-903, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34994761

RESUMO

A high-salt (HS) diet leads to metabolic disorders in Dahl salt-sensitive (SS) rats, and promotes the development of hypertension. According to the changes in the metabolites of SS rats, a set of combined dietary supplements containing amino acids and organic acids (AO) were designed. The purpose of the present study was to evaluate the effect of AO supplementation on the blood pressure of SS rats after the HS diet and clarify the mechanism of AO by metabolomics and biochemical analyses. The results showed that AO supplementation avoided the elevation of blood pressure induced by the HS diet in SS rats, increased the renal antioxidant enzyme activities (catalase, superoxide dismutase, glutathione reductase, and glutathione S-transferase), reduced the H2O2 and MDA levels, and restored the normal antioxidant status of the serum and kidneys. AO also reversed the decrease in the nitric oxide (NO) levels and NO synthase activity induced by the HS feed, which involved the L-arginine/NO pathway. Metabolomics analysis showed that AO administration increased the levels of amino acids such as cysteine, glycine, hypotaurine, and lysine in the renal medulla and the levels of leucine, isoleucine, and serine in the renal cortex. Of note, lysine, hypotaurine and glycine had higher metabolic centrality in the metabolic correlation network of the renal medulla after AO administration. In conclusion, AO intervention could prevent HS diet-induced hypertension in SS rats by restoring the metabolic homeostasis of the kidneys. Hence, AO has the potential to become a functional food additive to improve salt-sensitive hypertension.


Assuntos
Aminoácidos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/induzido quimicamente , Cloreto de Sódio na Dieta/administração & dosagem , Aminoácidos/química , Animais , Suplementos Nutricionais , Glutationa/metabolismo , Hipertensão/prevenção & controle , Córtex Renal/efeitos dos fármacos , Córtex Renal/metabolismo , Medula Renal/efeitos dos fármacos , Medula Renal/metabolismo , Masculino , Ratos , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta/efeitos adversos
8.
Amino Acids ; 54(2): 169-180, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34837556

RESUMO

The human Dietary Approaches to Stop Hypertension-Sodium Trial has shown that ß-aminoisobutyric acid (BAIBA) may prevent the development of salt-sensitive hypertension (SSHT). However, the specific antihypertensive mechanism remains unclear in the renal tissues of salt-sensitive (SS) rats. In this study, BAIBA (100 mg/kg/day) significantly attenuated SSHT via increased nitric oxide (NO) content in the renal medulla, and it induced a significant increase in NO synthesis substrates (L-arginine and malic acid) in the renal medulla. BAIBA enhanced the activity levels of total NO synthase (NOS), inducible NOS, and constitutive NOS. BAIBA resulted in increased fumarase activity and decreased fumaric acid content in the renal medulla. The high-salt diet (HSD) decreased fumarase expression in the renal cortex, and BAIBA increased fumarase expression in the renal medulla and renal cortex. Furthermore, in the renal medulla, BAIBA increased the levels of ATP, ADP, AMP, and ADP/ATP ratio, thus further activating AMPK phosphorylation. BAIBA prevented the decrease in renal medullary antioxidative defenses induced by the HSD. In conclusion, BAIBA's antihypertensive effect was underlined by the phosphorylation of AMPK, the prevention of fumarase's activity reduction caused by the HSD, and the enhancement of NO content, which in concert attenuated SSHT in SS rats.


Assuntos
Fumarato Hidratase , Hipertensão , Ácidos Aminoisobutíricos , Animais , Pressão Sanguínea , Suplementos Nutricionais , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/prevenção & controle , Ratos , Ratos Endogâmicos Dahl
9.
Biochem Biophys Res Commun ; 553: 1-8, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33752091

RESUMO

BACKGROUND AND AIMS: Hypercholesterolemia is characterized by the elevation of plasma total cholesterol level, especially low-density lipoprotein (LDL) cholesterol. This disease is usually caused by a mutation in genes such as LDL receptor, apolipoprotein B, or proprotein convertase subtilisin/kexin type 9. However, a considerable number of patients with hypercholesterolemia do not have any mutation in these candidate genes. In this study, we examined the difference in the metabolic level between patients with hypercholesterolemia and healthy subjects, and screened the potential biomarkers for this disease. METHODS: Analysis of plasma metabolomics in hypercholesterolemia patients and healthy controls was performed by gas chromatography-mass spectrometry and metabolic correlation networks were constructed using Gephi-0.9.2. RESULTS: First, metabolic profile analysis confirmed the distinct metabolic footprints between the patients and the healthy ones. The potential biomarkers screened by orthogonal partial least-squares discrimination analysis included l-lactic acid, cholesterol, phosphoric acid, d-glucose, urea, and d-allose (Variable importance in the projection > 1). Second, arginine and methionine metabolism were significantly perturbed in hypercholesterolemia patients. Finally, we identified that l-lactic acid, l-lysine, l-glutamine, and l-cysteine had high scores of centrality parameters in the metabolic correlation network. CONCLUSION: Plasma l-lactic acid could be used as a sensitive biomarker for hypercholesterolemia. In addition, arginine biosynthesis and cysteine and methionine metabolism were profoundly altered in patients with hypercholesterolemia.


Assuntos
Biomarcadores/sangue , Biomarcadores/metabolismo , Hipercolesterolemia/sangue , Hipercolesterolemia/metabolismo , Metabolômica , Adolescente , Adulto , Arginina/metabolismo , Estudos de Casos e Controles , Colesterol/metabolismo , Cisteína/metabolismo , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Ácido Láctico/sangue , Ácido Láctico/metabolismo , Lisina/metabolismo , Masculino , Metionina/metabolismo , Pessoa de Meia-Idade , Ácidos Fosfóricos/metabolismo , Ureia/metabolismo , Adulto Jovem
10.
Life Sci ; 270: 119134, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513395

RESUMO

AIMS: Salt-sensitive hypertension is a risk factor for cardiovascular disease. Previous studies have shown that insufficient arginine in the kidney caused by metabolic imbalance is an important factor in salt-sensitive hypertension. Whether the high nitrogen content of histidine can affect the balance of nitrogen metabolism in Dahl salt-sensitive (SS) rats. This article aimed to study the effects of oral histidine on salt-sensitive hypertension, kidney damage and metabolic patterns of high-salt diet in SS rats. MAIN METHODS: Adult rats were divided into four groups, and blood pressure was measured using a non-invasive tail-cuff system. Gas chromatography-mass spectrometry analyzed metabolites in serum and kidney tissues. KEY FINDINGS: High-salt diet significantly increased the blood pressure of rats and aggravated kidney damage. Of note, histidine can attenuate salt-sensitive hypertension and kidney damage by improving metabolic pattern, reducing Reactive Oxygen Species (ROS) and increasing nitric oxide levels in SS rats. SIGNIFICANCE: These results suggest that histidine could be a potential adjuvant to prevent and control salt-sensitive hypertension.


Assuntos
Histidina/farmacologia , Hipertensão/tratamento farmacológico , Administração Oral , Animais , Pressão Sanguínea/efeitos dos fármacos , Doenças Cardiovasculares/metabolismo , Dieta , Histidina/metabolismo , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Rim/metabolismo , Nefropatias/metabolismo , Masculino , Óxido Nítrico/metabolismo , Ratos , Ratos Endogâmicos Dahl , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Sódio na Dieta/efeitos adversos
11.
Biochem Biophys Res Commun ; 533(1): 188-194, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-32958245

RESUMO

AIMS: Dahl salt-sensitive (SS) rats develop similar prediabetes lesion characteristics, such as impaired glucose tolerance (IGT), when compared with the salt resistant rat. In this study, we evaluate the risk of high glucose intake during prediabetes and reveal the metabolic pathways relevant to the pathophysiology of prediabetes to diabetes using the SS rat model and compared this with the salt-resistant consomic SS.13BN rat model. METHODS: SS rats were fed with normal chow ±10% glucose solution ad libitum for five weeks. The same experimental treatment was performed on the SS.13BN rats. Metabolites derived from the serum and liver tissue were measured through biochemical and metabolomics analyses. Multivariate, pathway enrichment, and metabolic correlation network analyses were performed based on the metabolomics data. RESULTS: Biochemical analysis revealed that serum triglyceride (TG) significantly increased with a significant decrease in serum total cholesterol (TC) after high glucose intake in the SS rat. Metabolic pathway analysis revealed that high glucose intake interfered with galactose, glyoxylate, and dicarboxylate metabolism, most evidently in the SS rat. Hepatic l-lactic acid content increased in the SS rat after high glucose intake, whereas the opposite was observed in SS.13BN rats. Metabolic correlation network analysis based on serum metabolites revealed that urea and l-valine had higher metabolic centrality in the SS rat. CONCLUSION: Our findings revealed that high glucose intake can significantly stimulate hypertriglyceridemia and reduce serum TC level. The profoundly altered metabolic pathway included galactose, glyoxylate, and dicarboxylate metabolism. l-lactic acid was screened as a biomarker in liver, whereas l-valine and urea were screened as hub metabolites in serum.


Assuntos
Redes e Vias Metabólicas , Metaboloma , Estado Pré-Diabético/metabolismo , Animais , Glicemia/análise , Glicemia/metabolismo , Colesterol/sangue , Colesterol/metabolismo , Fígado/metabolismo , Masculino , Metabolômica , Estado Pré-Diabético/sangue , Ratos , Ratos Endogâmicos Dahl , Triglicerídeos/sangue , Triglicerídeos/metabolismo
12.
Exp Cell Res ; 382(2): 111483, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31247190

RESUMO

SIRT5 has a wide range of functions in different cellular processes such as glycolysis, TCA cycle and antioxidant defense, which mediates lysine desuccinylation, deglutarylation and demalonylation. Recent evidences have implicated that SIRT5 is a potential suppressor of gastric cancer (GC). However, the underlying mechanism of SIRT5 in gastric cancer is still unclear. Here, we show that SIRT5 expression is significantly decreased in human GC tissues. Functional analysis demonstrates that SIRT5 inhibits cell growth in vitro and in vivo, arrests the cell cycle in G1/S transition, and suppresses migration and invasion of GC cells via regulating epithelial-to-mesenchymal transition. Mechanistically, we demonstrate that there is the direct interaction between SIRT5 and 2-oxoglutarate dehydrogenase (OGDH), and desuccinylation of OGDH by SIRT5 inhibits the activity of OGDH complex. Further studies of the relationship between SIRT5 and OGDH show OGDH inhibition by succinyl phosphonate (SP) or siRNA suppresses the increase in cell growth and migration induced by SIRT5 deletion. Moreover, SIRT5 decreases mitochondrial membrane potential (ΔΨm), ATP products and increases the ROS levels and NADP/NADPH ratio in GC cells through the inhibition of OGDH complex activity. Therefore, SIRT5 suppresses GC cell growth and migration through desuccinylating OGDH and inhibiting OGDH complex activity to disturb mitochondrial functions and redox status.


Assuntos
Movimento Celular , Complexo Cetoglutarato Desidrogenase/metabolismo , Sirtuínas/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Nus , Mitocôndrias/metabolismo , Invasividade Neoplásica , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Ácido Succínico/metabolismo
13.
Hypertens Res ; 42(11): 1672-1682, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31235845

RESUMO

Fumarase insufficiencies can increase reactive oxygen species (ROS). This study will further dissect the imbalance of redox metabolism and the mechanism of ROS production using proteomic technology in fumarase knockdown HK-2 cells. The contribution of fumarase was further confirmed by supplementation of fumarate and malate in Dahl salt-sensitive rats. Proteomic analysis indicated that fumarase knockdown in HK-2 cells changed the expression or activity of NADPH oxidase (NOX), mitochondrial respiratory chain Complex I and III, ATP synthase subunits, and α-oxoglutarate dehydrogenase (OGDH). Meanwhile, the activities of key antioxidant enzymes, including glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, glutathione reductase, glutathione peroxidase, and glutathione S-transferase, increased significantly. The apparent activation of antioxidant defense appeared insufficient as the glutathione and GSH/GSSG ratio were decreased significantly. Dahl salt-sensitive rats exhibited changes in redox metabolism similar to HK-2 cells with fumarase knockdown. Supplementation with fumarate and malate increased and decreased, respectively, blood pressure and H2O2 and malondialdehyde in salt-sensitive rats. These results indicated that insufficient fumarase activity increased ROS by regulating NOX, Complex I and III, ATPase alpha, and OGDH and the imbalance of glutathione metabolism, which may be one of the main reasons for salt-sensitive hypertension. Malate may be a potentially effective drug for the prevention and treatment of salt-sensitive hypertension.


Assuntos
Fumarato Hidratase/metabolismo , Hipertensão/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular , Humanos , Masculino , Oxirredução , Proteoma , Ratos Endogâmicos Dahl
14.
Food Funct ; 10(2): 849-858, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30681096

RESUMO

In the present study, the renal-protective effect of hawthorn fruit extract (HW) on high-salt hypertension and its effect on metabolic patterns are determined. High salt causes hypertension in Dahl salt sensitive (SS) rats, while HW can effectively attenuate high-salt induced hypertension, and, various antihypertensive ingredients of HW have also been successfully identified using GC/MS. Of note, the biochemical assay indicates that HW significantly increases the concentration of nitric oxide (NO) and decreases the concentration of H2O2 and malonaldehyde. Especially, HW increases the activities of NO synthase and catalase in the renal medulla. Simultaneously, the renal cortex and medulla, harvested from SS rats, are used to perform the metabolomics analysis, and then, 11 and 8 differential metabolites are identified in the renal medulla and cortex with the HW gavage, respectively. All differential metabolites are then used to perform the pathway enrichment analysis. The results show that many metabolic pathways are enriched in both the renal medulla and cortex, especially those in the medulla including 23 enriched pathways. Therefore, it provides evidence that HW confers an antioxidant effect on high-salt induced hypertension and dramatically alters the metabolic patterns of SS rats, and the antihypertensive ingredients of HW also further indicate that it may be used as a nutritional supplemental therapeutic drug to protect against high-salt induced hypertension in the renal medulla.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Crataegus/química , Frutas/química , Extratos Vegetais/farmacologia , Animais , Catalase/genética , Catalase/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Medula Renal/efeitos dos fármacos , Medula Renal/enzimologia , Masculino , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Estresse Oxidativo , Extratos Vegetais/química , Distribuição Aleatória , Ratos , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta/toxicidade
15.
Food Nutr Res ; 59: 29290, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26617387

RESUMO

BACKGROUND: Although grape wines have firmly dominated the production and consumption markets of fruit wines, raspberry, strawberry, and mulberry have been utilized to make wines because of their joyful aroma and high contents of polyphenolic phytochemicals and essential fatty acids. However, little is known about aromatic compounds of the wines produced from these three fruits. METHODS: The aromatic composition of fruit wines produced from raspberry, strawberry, mulberry, and red grape was analyzed by GC-MS. Odor activity values (OAVs) and relative odor contributions (ROCs) were used to estimate the sensory contribution of the aromatic compounds to the overall flavor of the wines. RESULTS: In strawberry, raspberry, and mulberry wines, 27, 30, and 31 odorants were detected, respectively. Alcohols formed the most abundant group, followed by esters and acids. The grape wine contained a wider variety (16 types) of alcohols, and 4-methyl-2-pentanol and 2,3-butanediol were not present in the three fruit wines. The quantity of esters in raspberry (1.54%) and mulberry wines (2.08%) were higher than those of strawberry wine (0.78%), and mulberry wine contained more types of esters. There were no significant differences of acids between the three fruit wines and the control wine. In addition, 2-heptanone, 2-octanone, 2-nonanone, and 2-undecanone were unique to raspberry wine, and nonanal was present only in mulberry wine. The indistinguishable aroma of the three fruit wines was attributed to the dominance of fruity and floral odor components derived from ethyl esters of fatty acids and their contributions to the global aroma of the three fruit wines. CONCLUSION: The present study demonstrated that there were significant differences in the volatile components of fruit wines made from raspberry, strawberry, and mulberry. The aroma compounds were more abundant in the raspberry and mulberry wines than in the strawberry wine, but the quality of strawberry wine was superior to raspberry and mulberry wines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...