Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Skelet Muscle ; 10(1): 20, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641118

RESUMO

Skeletal muscle is increasingly considered an endocrine organ secreting myokines and extracellular vesicles (exosomes and microvesicles), which can affect physiological changes with an impact on different pathological conditions, including regenerative processes, aging, and myopathies. Primary human myoblasts are an essential tool to study the muscle vesicle secretome. Since their differentiation in conditioned media does not induce any signs of cell death or cell stress, artefactual effects from those processes are unlikely. However, adult human primary myoblasts senesce in long-term tissue culture, so a major technical challenge is posed by the need to avoid artefactual effects resulting from pre-senescent changes. Since these cells should be studied within a strictly controlled pre-senescent division count (<21 divisions), and yields of myoblasts per muscle biopsy are low, it is difficult or impossible to amplify sufficiently large cell numbers (some 250 × 106 myoblasts) to obtain sufficient conditioned medium for the standard ultracentrifugation approach to exosome isolation.Thus, an optimized strategy to extract and study secretory muscle vesicles is needed. In this study, conditions are optimized for the in vitro cultivation of human myoblasts, and the quality and yield of exosomes extracted using an ultracentrifugation protocol are compared with a modified polymer-based precipitation strategy combined with extra washing steps. Both vesicle extraction methods successfully enriched exosomes, as vesicles were positive for CD63, CD82, CD81, floated at identical density (1.15-1.27 g.ml-1), and exhibited similar size and cup-shape using electron microscopy and NanoSight tracking. However, the modified polymer-based precipitation was a more efficient strategy to extract exosomes, allowing their extraction in sufficient quantities to explore their content or to isolate a specific subpopulation, while requiring >30 times fewer differentiated myoblasts than what is required for the ultracentrifugation method. In addition, exosomes could still be integrated into recipient cells such as human myotubes or iPSC-derived motor neurons.Modified polymer-based precipitation combined with extra washing steps optimizes exosome yield from a lower number of differentiated myoblasts and less conditioned medium, avoiding senescence and allowing the execution of multiple experiments without exhausting the proliferative capacity of the myoblasts.


Assuntos
Fracionamento Celular/métodos , Exossomos/metabolismo , Mioblastos/metabolismo , Cultura Primária de Células/métodos , Células Cultivadas , Humanos
2.
Hum Reprod ; 27(8): 2438-47, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22617121

RESUMO

BACKGROUND: Oocyte maturation and competence to development depends on its close relationship with cumulus cells (CCs). However, the maturation conditions of human cumulus-oocyte complexes (COCs) might affect gene expression in both oocyte and CCs. We thus compared the transcriptome profiles of CCs isolated from in vivo and in vitro matured COCs at different nuclear maturation stages. METHODS: Three groups of CCs from patients who underwent ICSI were included: CCs of patients with polycystic ovary syndrome (PCOS) referred for in vitro maturation (IVM), CCs from patients with PCOS for in vivo maturation (used as controls) and CCs from normal responders referred for in vivo maturation. CCs were isolated from COCs at the germinal vesicle, metaphase I and metaphase II stages. Microarray technology was used to analyse the global gene expression and significance analysis of microarray to compare the expression profiles of CCs from COCs at different nuclear maturation stages following IVM or in vivo maturation. Selected genes were validated by RT-qPCR. RESULTS: In CCs isolated after IVM, genes related to cumulus expansion and oocyte maturation, such as EREG, AREG and PTX3, were down-regulated, while cell cycle-related genes were up-regulated in comparison with CCs from in vivo matured COCs from PCOS and normal responder patients. Moreover, irrespective of the stage of oocyte maturation, genes involved in DNA replication, recombination and repair were up-regulated in CCs after IVM. CONCLUSIONS: The CC transcriptomic signature varies according to both the oocyte maturation stage and the maturation conditions. Our findings suggest a delay in the acquisition of the mature CC phenotype following IVM, opening a new perspective for the improvement in IVM conditions.


Assuntos
Células do Cúmulo/citologia , Regulação da Expressão Gênica , Oócitos/citologia , Oócitos/metabolismo , Folículo Ovariano/citologia , Adulto , Técnicas de Cultura Embrionária/métodos , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Técnicas de Maturação in Vitro de Oócitos , Análise de Sequência com Séries de Oligonucleotídeos , Oogênese/fisiologia , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/terapia , Reação em Cadeia da Polimerase/métodos , Fatores de Tempo , Transcrição Gênica
3.
PLoS One ; 6(11): e27179, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22087263

RESUMO

The bi-directional communication between the oocyte and the surrounding cumulus cells (CCs) is crucial for the acquisition of oocyte competence. We investigated the transcriptomic profile of human CCs isolated from mature and immature oocytes under stimulated cycle. We used human Genome U133 Plus 2.0 microarrays to perform an extensive analysis of the genes expressed in human CCs obtained from patients undergoing intra-cytoplasmic sperm injection. CC samples were isolated from oocyte at germinal vesicle, stage metaphase I and stage metaphase II. For microarray analysis, we used eight chips for each CC category. Significance analysis of microarray multiclass was used to analyze the microarray data. Validation was performed by RT-qPCR using an independent cohort of CC samples. We identified differentially over-expressed genes between the three CC categories. This study revealed a specific signature of gene expression in CCs issued from MII oocyte compared with germinal vesicle and metaphase I. The CC gene expression profile, which is specific of MII mature oocyte, can be useful as predictors of oocyte quality.


Assuntos
Ciclo Celular , Núcleo Celular/fisiologia , Células do Cúmulo/citologia , Perfilação da Expressão Gênica , Oócitos/citologia , Comunicação Celular , Estudos de Coortes , Feminino , Humanos , Masculino , Análise em Microsséries , Injeções de Esperma Intracitoplásmicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...