Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 10(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38920929

RESUMO

This study centers on the development and characterization of an innovative electrochemical sensing probe composed of a sensing mesoporous functional sol-gel coating integrated onto a glassy carbon electrode (sol-gel/GCE) for the detection of NH3 and/or NH4+ in water. The main interest for integrating a functional sol-gel coating onto a GCE is to increase the selective and sensing properties of the GCE probe towards NH3 and/or NH4+ ions. The structure and surface morphology of the newly developed sol-gel/GCE probe were characterized employing scanning electron microscopy (SEM), atomic force microscopy (AFM), dynamic light scattering (DLS), and Fourier-transform infrared (FTIR), while the electrochemical sensing properties were evaluated by Berthelot's reaction, cyclic voltammetry (CV), and adsorptive square wave-anodic striping voltammetry (Ads SW-ASV). It is shown that the newly developed sol-gel coating is homogeneously deposited on the GCE with a sub-micron and uniform thickness close to 630 nm and a surface roughness of 25 nm. The sensing testing of the sol-gel/GCE probe showed limits of detection and limits of quantitation of 1.7 and 5.56 nM of NH4+, respectively, as well as a probe sensitivity of 5.74 × 10-1 µA/µM cm-2. The developed probe was fruitfully validated for the selective detection of NH3/NH4+ in fresh and sea water samples. Computed Student texp (0.45-1.25) and Fexp (1.69-1.78) (n = 5) tests were less than the theoretical ttab (2.78) and Ftab (6.39) at 95% probability.

2.
Gels ; 10(5)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38786232

RESUMO

The current study reports on the impact of a series of functional alkoxysilanes on the wettability and structure of a well-established silicon/zirconium hybrid anticorrosion sol-gel coating. The selected functional alkoxysilanes comprise tetra ethylorthosilicate (TEOS), 3-glycidyloxypropyltrimethoxysilane (GPTMS), 3-aminopropyltriethoxysilane (APTES) and vinyltriethoxysilane (VTES) and are incorporated at various concentrations (1, 5, 10 and 20%) within the silicon/zirconium sol-gel material. The prepared materials are successfully processed as coatings and cured at different temperatures in the range of 100-150 °C. The characterisation of the structures and surfaces is performed by dynamic light scattering (DLS), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), silicon nuclear magnetic resonance spectroscopy (29Si-NMR), atomic force microscopy (AFM) and static water contact angle (WCA). Structural characterisations (DLS, FTIR,29Si-NMR) show that the functional alkoxysilanes effectively bind at the surface of the reference sol-gel material, resulting in the formation of functional core-shell nanoparticles. WCA results show that the hydrophobic properties of all materials decrease with curing temperature, and AFM analysis demonstrated that this behaviour is associated with a decrease in roughness. The physico-chemical processes taking place are critically assigned and discussed.

3.
Front Chem ; 12: 1324426, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389725

RESUMO

Nanomaterial combined polymeric membranes such as polyurethane foams (PUFs) have garnered enormous attention in the field of water purification due to their ease of management and surface modification, cost-effectiveness, and mechanical, chemical, and thermal properties. Thus, this study reports the use of novel Sol-gel impregnated polyurethane foams (Sol-gel/PUFs) as new dispersive solid phase microextractors (d- µ SPME) for the efficient separation and subsequent spectrophotometric detection of Eosin Y (EY) textile dye in an aqueous solution with a pH of 3-3.8. The Sol gel, PUFs, and Sol gel-impregnated PUFs were characterized using scanning electron microscopy (SEM), goniometry measurements, dynamic light scattering (DLS), energy dispersive spectroscopy (EDS), UV-Visible, and FTIR spectra. Batch experiment results displayed a remarkable removal percentage (96% ± 5.4%) of the EY from the aqueous solution, with the total sorption time not exceeding 60 min. These data indicate rate-limited sorption via diffusion and/or surface complex ion associate formations after the rapid initial sorption steps. A pseudo-second order kinetic model thoroughly explained the sorption kinetics, providing a sorption capacity (qe) of 37.64 mg g-1, a half-life time (t1/2) of 0.8 ± 0.01 min, and intrinsic penetration control dye retention. The thermodynamic results revealed a negative value for ΔG° (-78.07 kJ mol-1 at 293 K), clearly signifying that the dye uptake was spontaneous, as well as a negative value for ΔH° (-69.58 kJ mol-1) and a positive value for ΔS° (147.65 J mol-1 K-1), making clear the exothermic nature of EY adsorption onto the sorbent, with a growth in randomness at the molecular level. A ternary retention mechanism is proposed, involving the "weak base anion exchanger" of {(-CH2-OH+ -CH2-) (Dye anion)-}Sol-gel/PUF and/or {(-NH2 + -COO-) (Dye anion)-}Sol-gel/PUF via solvent extraction and "surface adsorption" of the dye anion on/in the Sol-gel/PUFs membranes in addition to H-bonding, including surface complexation and electrostatic π-π interaction, between the dye and the silicon/zirconium oxide (Si-O-Zr) and siloxane (Si-O-Si) groups on the sorbent. Complete extraction and recovery (93.65 ± 0.2, -102.28 ± 2.01) of EY dye with NaOH (0.5 M) as a proper eluting agent was achieved using a sorbent-packed mini column. In addition, the established extractor displayed excellent reusability and does not require organic solvents for EY enrichment in water samples, making it a talented nominee as a novel sorbent for EY sorption from wastewater. This study is of great consequence for expanding the applicatio1n of Sol-gel/PUFs in developing innovative spectrophotometric sensing strategies for dye determination. In view of this, it would also be remarkable to perform future studies to explore the analytical implications of this extractor regarding safety and environmental and public health issues associated to the pollutant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...