Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 1488, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674615

RESUMO

RNA helicases remodel the spliceosome to enable pre-mRNA splicing, but their binding and mechanism of action remain poorly understood. To define helicase-RNA contacts in specific spliceosomal states, we develop purified spliceosome iCLIP (psiCLIP), which reveals dynamic helicase-RNA contacts during splicing catalysis. The helicase Prp16 binds along the entire available single-stranded RNA region between the branchpoint and 3'-splice site, while Prp22 binds diffusely downstream of the branchpoint before exon ligation, but then switches to more narrow binding in the downstream exon after exon ligation, arguing against a mechanism of processive translocation. Depletion of the exon-ligation factor Prp18 destabilizes Prp22 binding to the pre-mRNA, suggesting that proofreading by Prp22 may sense the stability of the spliceosome during exon ligation. Thus, psiCLIP complements structural studies by providing key insights into the binding and proofreading activity of spliceosomal RNA helicases.


Assuntos
Éxons , RNA Helicases/química , RNA Helicases/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Autoantígenos/química , Autoantígenos/metabolismo , Microscopia Crioeletrônica , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , Modelos Moleculares , Precursores de RNA/química , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Fúngico/metabolismo , Proteínas Recombinantes , Ribonucleoproteína Nuclear Pequena U5/química , Ribonucleoproteína Nuclear Pequena U5/genética , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Spliceossomos/química
2.
Nat Struct Mol Biol ; 27(1): 1-2, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31925411
3.
Science ; 363(6428): 710-714, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30705154

RESUMO

During exon ligation, the Saccharomyces cerevisiae spliceosome recognizes the 3'-splice site (3'SS) of precursor messenger RNA (pre-mRNA) through non-Watson-Crick pairing with the 5'SS and the branch adenosine, in a conformation stabilized by Prp18 and Prp8. Here we present the 3.3-angstrom cryo-electron microscopy structure of a human postcatalytic spliceosome just after exon ligation. The 3'SS docks at the active site through conserved RNA interactions in the absence of Prp18. Unexpectedly, the metazoan-specific FAM32A directly bridges the 5'-exon and intron 3'SS of pre-mRNA and promotes exon ligation, as shown by functional assays. CACTIN, SDE2, and NKAP-factors implicated in alternative splicing-further stabilize the catalytic conformation of the spliceosome during exon ligation. Together these four proteins act as exon ligation factors. Our study reveals how the human spliceosome has co-opted additional proteins to modulate a conserved RNA-based mechanism for 3'SS selection and to potentially fine-tune alternative splicing at the exon ligation stage.


Assuntos
Processamento Alternativo , Proteínas de Transporte/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Correpressoras/metabolismo , Proteínas de Ligação a DNA/metabolismo , Éxons , Proteínas Nucleares/metabolismo , Spliceossomos/química , Biocatálise , Microscopia Crioeletrônica , Células HeLa , Humanos , Conformação Proteica , Precursores de RNA/genética , Sítios de Splice de RNA , Proteínas Repressoras
4.
RNA ; 23(6): 968-981, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28348170

RESUMO

Spliceosomal proteins Hsh49p and Cus1p are components of SF3b, which together with SF3a, Msl1p/Lea1p, Sm proteins, and U2 snRNA, form U2 snRNP, which plays a crucial role in pre-mRNA splicing. Hsh49p, comprising two RRMs, forms a heterodimer with Cus1p. We determined the crystal structures of Saccharomyces cerevisiae full-length Hsh49p as well as its RRM1 in complex with a minimal binding region of Cus1p (residues 290-368). The structures show that the Cus1 fragment binds to the α-helical surface of Hsh49p RRM1, opposite the four-stranded ß-sheet, leaving the canonical RNA-binding surface available to bind RNA. Hsh49p binds the 5' end region of U2 snRNA via RRM1. Its affinity is increased in complex with Cus1(290-368)p, partly because an extended RNA-binding surface forms across the protein-protein interface. The Hsh49p RRM1-Cus1(290-368)p structure fits well into cryo-EM density of the Bact spliceosome, corroborating the biological relevance of our crystal structure.


Assuntos
Modelos Moleculares , Conformação Proteica , Ribonucleoproteína Nuclear Pequena U2/química , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Complexos Multiproteicos/metabolismo , Domínios Proteicos Ricos em Prolina , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA/química , RNA/genética , RNA/metabolismo , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U2/metabolismo
5.
Nature ; 542(7641): 377-380, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28076345

RESUMO

The spliceosome excises introns from pre-mRNAs in two sequential transesterifications-branching and exon ligation-catalysed at a single catalytic metal site in U6 small nuclear RNA (snRNA). Recently reported structures of the spliceosomal C complex with the cleaved 5' exon and lariat-3'-exon bound to the catalytic centre revealed that branching-specific factors such as Cwc25 lock the branch helix into position for nucleophilic attack of the branch adenosine at the 5' splice site. Furthermore, the ATPase Prp16 is positioned to bind and translocate the intron downstream of the branch point to destabilize branching-specific factors and release the branch helix from the active site. Here we present, at 3.8 Å resolution, the cryo-electron microscopy structure of a Saccharomyces cerevisiae spliceosome stalled after Prp16-mediated remodelling but before exon ligation. While the U6 snRNA catalytic core remains firmly held in the active site cavity of Prp8 by proteins common to both steps, the branch helix has rotated by 75° compared to the C complex and is stabilized in a new position by Prp17, Cef1 and the reoriented Prp8 RNase H-like domain. This rotation of the branch helix removes the branch adenosine from the catalytic core, creates a space for 3' exon docking, and restructures the pairing of the 5' splice site with the U6 snRNA ACAGAGA region. Slu7 and Prp18, which promote exon ligation, bind together to the Prp8 RNase H-like domain. The ATPase Prp22, bound to Prp8 in place of Prp16, could interact with the 3' exon, suggesting a possible basis for mRNA release after exon ligation. Together with the structure of the C complex, our structure of the C* complex reveals the two major conformations of the spliceosome during the catalytic stages of splicing.


Assuntos
Microscopia Crioeletrônica , Éxons , Splicing de RNA , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo , Spliceossomos/ultraestrutura , Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Biocatálise , Domínio Catalítico , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestrutura , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/ultraestrutura , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Éxons/genética , Ligação Proteica , Domínios Proteicos , RNA Helicases/metabolismo , RNA Helicases/ultraestrutura , Sítios de Splice de RNA/genética , Fatores de Processamento de RNA/química , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/ultraestrutura , RNA Nuclear Pequeno/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/ultraestrutura , Ribonuclease H/química , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/ultraestrutura , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Ribonucleoproteína Nuclear Pequena U5/ultraestrutura , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas Nucleares Pequenas/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Spliceossomos/química
6.
Nature ; 537(7619): 197-201, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27459055

RESUMO

Precursor mRNA (pre-mRNA) splicing proceeds by two consecutive transesterification reactions via a lariat-intron intermediate. Here we present the 3.8 Å cryo-electron microscopy structure of the spliceosome immediately after lariat formation. The 5'-splice site is cleaved but remains close to the catalytic Mg2+ site in the U2/U6 small nuclear RNA (snRNA) triplex, and the 5'-phosphate of the intron nucleotide G(+1) is linked to the branch adenosine 2'OH. The 5'-exon is held between the Prp8 amino-terminal and linker domains, and base-pairs with U5 snRNA loop 1. Non-Watson-Crick interactions between the branch helix and 5'-splice site dock the branch adenosine into the active site, while intron nucleotides +3 to +6 base-pair with the U6 snRNA ACAGAGA sequence. Isy1 and the step-one factors Yju2 and Cwc25 stabilize docking of the branch helix. The intron downstream of the branch site emerges between the Prp8 reverse transcriptase and linker domains and extends towards the Prp16 helicase, suggesting a plausible mechanism of remodelling before exon ligation.


Assuntos
Microscopia Crioeletrônica , Precursores de RNA/metabolismo , Splicing de RNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Spliceossomos/metabolismo , Spliceossomos/ultraestrutura , Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Pareamento de Bases , Sequência de Bases , Domínio Catalítico , Esterificação , Éxons/genética , Íntrons/genética , Magnésio/metabolismo , Modelos Moleculares , Proteínas Nucleares/metabolismo , RNA Helicases/metabolismo , Precursores de RNA/química , Precursores de RNA/ultraestrutura , Sítios de Splice de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Fúngico/ultraestrutura , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/química , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Spliceossomos/química
7.
Nature ; 530(7590): 298-302, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26829225

RESUMO

U4/U6.U5 tri-snRNP represents a substantial part of the spliceosome before activation. A cryo-electron microscopy structure of Saccharomyces cerevisiae U4/U6.U5 tri-snRNP at 3.7 Šresolution led to an essentially complete atomic model comprising 30 proteins plus U4/U6 and U5 small nuclear RNAs (snRNAs). The structure reveals striking interweaving interactions of the protein and RNA components, including extended polypeptides penetrating into subunit interfaces. The invariant ACAGAGA sequence of U6 snRNA, which base-pairs with the 5'-splice site during catalytic activation, forms a hairpin stabilized by Dib1 and Prp8 while the adjacent nucleotides interact with the exon binding loop 1 of U5 snRNA. Snu114 harbours GTP, but its putative catalytic histidine is held away from the γ-phosphate by hydrogen bonding to a tyrosine in the amino-terminal domain of Prp8. Mutation of this histidine to alanine has no detectable effect on yeast growth. The structure provides important new insights into the spliceosome activation process leading to the formation of the catalytic centre.


Assuntos
Microscopia Crioeletrônica , Ribonucleoproteínas Nucleares Pequenas/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/ultraestrutura , Pareamento de Bases , Domínio Catalítico , DNA Helicases/metabolismo , Éxons/genética , Guanosina Trifosfato/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Conformação de Ácido Nucleico , Sítios de Splice de RNA , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/química , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo
8.
Acta Crystallogr D Struct Biol ; 72(Pt 1): 131-46, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26894541

RESUMO

The core domain of small nuclear ribonucleoprotein (snRNP), comprised of a ring of seven paralogous proteins bound around a single-stranded RNA sequence, functions as the assembly nucleus in the maturation of U1, U2, U4 and U5 spliceosomal snRNPs. The structure of the human U4 snRNP core domain was initially solved at 3.6 Å resolution by experimental phasing using data with tetartohedral twinning. Molecular replacement from this model followed by density modification using untwinned data recently led to a structure of the minimal U1 snRNP at 3.3 Å resolution. With the latter structure providing a search model for molecular replacement, the U4 core-domain structure has now been re-refined. The U4 Sm site-sequence AAUUUUU has been shown to bind to the seven Sm proteins SmF-SmE-SmG-SmD3-SmB-SmD1-SmD2 in an identical manner as the U1 Sm-site sequence AAUUUGU, except in SmD1 where the bound U replaces G. The progression from the initial to the re-refined structure exemplifies a tortuous route to accuracy: where well diffracting crystals of complex assemblies are initially unavailable, the early model errors are rectified by exploiting preliminary interpretations in further experiments involving homologous structures. New insights are obtained from the more accurate model.


Assuntos
Ribonucleoproteína Nuclear Pequena U4-U6/química , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Modelos Moleculares , Nucleotídeos/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Alinhamento de Sequência
9.
Elife ; 42015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25555158

RESUMO

U1 snRNP binds to the 5' exon-intron junction of pre-mRNA and thus plays a crucial role at an early stage of pre-mRNA splicing. We present two crystal structures of engineered U1 sub-structures, which together reveal at atomic resolution an almost complete network of protein-protein and RNA-protein interactions within U1 snRNP, and show how the 5' splice site of pre-mRNA is recognised by U1 snRNP. The zinc-finger of U1-C interacts with the duplex between pre-mRNA and the 5'-end of U1 snRNA. The binding of the RNA duplex is stabilized by hydrogen bonds and electrostatic interactions between U1-C and the RNA backbone around the splice junction but U1-C makes no base-specific contacts with pre-mRNA. The structure, together with RNA binding assays, shows that the selection of 5'-splice site nucleotides by U1 snRNP is achieved predominantly through basepairing with U1 snRNA whilst U1-C fine-tunes relative affinities of mismatched 5'-splice sites.


Assuntos
Sítios de Splice de RNA , Ribonucleoproteína Nuclear Pequena U1/química , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/metabolismo
10.
Nature ; 493(7434): 638-43, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23354046

RESUMO

The active centre of the spliceosome consists of an intricate network formed by U5, U2 and U6 small nuclear RNAs, and a pre-messenger-RNA substrate. Prp8, a component of the U5 small nuclear ribonucleoprotein particle, crosslinks extensively with this RNA catalytic core. Here we present the crystal structure of yeast Prp8 (residues 885-2413) in complex with Aar2, a U5 small nuclear ribonucleoprotein particle assembly factor. The structure reveals tightly associated domains of Prp8 resembling a bacterial group II intron reverse transcriptase and a type II restriction endonuclease. Suppressors of splice-site mutations, and an intron branch-point crosslink, map to a large cavity formed by the reverse transcriptase thumb, and the endonuclease-like and RNaseH-like domains. This cavity is large enough to accommodate the catalytic core of group II intron RNA. The structure provides crucial insights into the architecture of the spliceosome active site, and reinforces the notion that nuclear pre-mRNA splicing and group II intron splicing have a common origin.


Assuntos
Modelos Moleculares , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U5/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Spliceossomos/química , Domínio Catalítico , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
F1000 Biol Rep ; 22010 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-20948795

RESUMO

Splicing of the precursors of eukaryotic mRNA and some non-coding RNAs is catalyzed by the 'spliceosome', which comprises five RNA-protein complexes (small nuclear ribonucleoproteins, or snRNPs) that assemble in an ordered manner onto precursor-mRNAs. Much progress has been made in determining the gross morphology of spliceosomal assembly intermediates. Recently, the first crystal structure of a spliceosomal snRNP has provided significant insight into assembly and architecture of spliceosomal snRNPs in general and the structure-function relationship of human U1 snRNP in particular.

12.
Nature ; 465(7297): 507-10, 2010 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-20364120

RESUMO

Targeting of proteins to appropriate subcellular compartments is a crucial process in all living cells. Secretory and membrane proteins usually contain an amino-terminal signal peptide, which is recognized by the signal recognition particle (SRP) when nascent polypeptide chains emerge from the ribosome. The SRP-ribosome nascent chain complex is then targeted through its GTP-dependent interaction with SRP receptor to the protein-conducting channel on endoplasmic reticulum membrane in eukaryotes or plasma membrane in bacteria. A universally conserved component of SRP (refs 1, 2), SRP54 or its bacterial homologue, fifty-four homologue (Ffh), binds the signal peptides, which have a highly divergent sequence divisible into a positively charged n-region, an h-region commonly containing 8-20 hydrophobic residues and a polar c-region. No structure has been reported that exemplifies SRP54 binding of any signal sequence. Here we have produced a fusion protein between Sulfolobus solfataricus SRP54 (Ffh) and a signal peptide connected via a flexible linker. This fusion protein oligomerizes in solution through interaction between the SRP54 and signal peptide moieties belonging to different chains, and it is functional, as demonstrated by its ability to bind SRP RNA and SRP receptor FtsY. We present the crystal structure at 3.5 A resolution of an SRP54-signal peptide complex in the dimer, which reveals how a signal sequence is recognized by SRP54.


Assuntos
Sinais Direcionadores de Proteínas/fisiologia , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/metabolismo , Sulfolobus solfataricus/química , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Virais/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Relação Estrutura-Atividade
13.
Structure ; 17(7): 930-8, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19604473

RESUMO

We recently determined the crystal structure of the functional core of human U1 snRNP, consisting of nine proteins and one RNA, based on a 5.5 A resolution electron density map. At 5-7 A resolution, alpha helices and beta sheets appear as rods and slabs, respectively, hence it is not possible to determine protein fold de novo. Using inverse beam geometry, accurate anomalous signals were obtained from weakly diffracting and radiation sensitive P1 crystals. We were able to locate anomalous scatterers with positional errors below 2 A. This enabled us not only to place protein domains of known structure accurately into the map but also to trace an extended polypeptide chain, of previously undetermined structure, using selenomethionine derivatives of single methionine mutants spaced along the sequence. This method of Se-Met scanning, in combination with structure prediction, is a powerful tool for building a protein of unknown fold into a low resolution electron density map.


Assuntos
Ribonucleoproteína Nuclear Pequena U1/análise , Espalhamento de Radiação , Proteínas Centrais de snRNP/química , Sequência de Bases , Sítios de Ligação , Brometos/química , Brometos/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Humanos , Metionina/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Peptídeos/análise , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA/análise , Selenometionina/análise , Tantálio/química , Tantálio/metabolismo , Tiorredoxinas/química , Difração de Raios X
14.
Nature ; 458(7237): 475-80, 2009 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-19325628

RESUMO

Human spliceosomal U1 small nuclear ribonucleoprotein particles (snRNPs), which consist of U1 small nuclear RNA and ten proteins, recognize the 5' splice site within precursor messenger RNAs and initiate the assembly of the spliceosome for intron excision. An electron density map of the functional core of U1 snRNP at 5.5 A resolution has enabled us to build the RNA and, in conjunction with site-specific labelling of individual proteins, to place the seven Sm proteins, U1-C and U1-70K into the map. Here we present the detailed structure of a spliceosomal snRNP, revealing a hierarchical network of intricate interactions between subunits. A striking feature is the amino (N)-terminal polypeptide of U1-70K, which extends over a distance of 180 A from its RNA binding domain, wraps around the core domain consisting of the seven Sm proteins and finally contacts U1-C, which is crucial for 5'-splice-site recognition. The structure of U1 snRNP provides insights into U1 snRNP assembly and suggests a possible mechanism of 5'-splice-site recognition.


Assuntos
Ribonucleoproteína Nuclear Pequena U1/química , Spliceossomos/química , Cristalografia por Raios X , Humanos , Modelos Biológicos , Modelos Moleculares , Conformação de Ácido Nucleico , Dobramento de Proteína , Estrutura Terciária de Proteína , Sítios de Splice de RNA , Splicing de RNA , RNA Nuclear Pequeno/química , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Dedos de Zinco
15.
Methods Mol Biol ; 363: 259-76, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17272846

RESUMO

RNA-binding proteins play crucial roles in many biological processes, such as transcription, pre-mRNA splicing, nuclear-cytoplasmic transport of RNA, and translation of mRNA. Specific RNA-protein interactions are key to the correct assembly of ribonucleoprotein complexes and their biological functions. To date, more than 100 unique RNA-protein crystals have been prepared and there are more than 300 entries of RNA-protein complex structures in the Protein Data Bank. This chapter focuses on methods of RNA-protein complex crystallization discussed in six sections: determination of protein-binding sites in RNA, preparation of RNA, preparation of protein, annealing of RNA, reconstitution of RNA-protein complex, and searching crystallization conditions.


Assuntos
Cristalização/métodos , Ribonucleoproteínas/química , Sítios de Ligação , Bases de Dados de Proteínas , RNA/química , Proteínas de Ligação a RNA/química
16.
J Mol Biol ; 367(1): 187-203, 2007 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-17254600

RESUMO

The human signal recognition particle (SRP) is a large RNA-protein complex that targets secretory and membrane proteins to the endoplasmic reticulum membrane. The S domain of SRP is composed of roughly half of the 7SL RNA and four proteins (SRP19, SRP54, and the SRP68/72 heterodimer). In order to understand how the binding of proteins induces conformational changes of RNA and affects subsequent binding of other protein subunits, we have performed chemical and enzymatic probing of all S domain assembly intermediates. Ethylation interference experiments show that phosphate groups in helices 5, 6 and 7 that are essential for the binding of SRP68/72 are all on the same face of the RNA. Hydroxyl radical footprinting and dimethylsulphate (DMS) modifications show that SRP68/72 brings the lower part of helices 6 and 8 closer. SRP68/72 binding also protects the SRP54 binding site (helix 8 asymmetric loop) from chemical modification and RNase cleavage, whereas, in the presence of both SRP19 and SRP68/72, the long strand of helix 8 asymmetric loop becomes readily accessible to chemical and enzymatic probes. These results indicate that the RNA platform observed in the crystal structure of the SRP19-SRP54M-RNA complex already exists in the presence of SRP68/72 and SRP19. Therefore, SRP68/72, together with SRP19, rearranges the 7SL RNA in an SRP54 binding competent state.


Assuntos
RNA Citoplasmático Pequeno/química , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/química , Partícula de Reconhecimento de Sinal/química , Humanos , Radical Hidroxila/química , Modelos Moleculares , Conformação Molecular , Conformação de Ácido Nucleico , RNA Citoplasmático Pequeno/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Ésteres do Ácido Sulfúrico/química
17.
Nucleic Acids Res ; 34(1): 275-85, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16407334

RESUMO

Previous kinetic investigations of the N-terminal RNA recognition motif (RRM) domain of spliceosomal protein U1A, interacting with its RNA target U1 hairpin II, provided experimental evidence for a 'lure and lock' model of binding in which electrostatic interactions first guide the RNA to the protein, and close range interactions then lock the two molecules together. To further investigate the 'lure' step, here we examined the electrostatic roles of two sets of positively charged amino acids in U1A that do not make hydrogen bonds to the RNA: Lys20, Lys22 and Lys23 close to the RNA-binding site, and Arg7, Lys60 and Arg70, located on 'top' of the RRM domain, away from the RNA. Surface plasmon resonance-based kinetic studies, supplemented with salt dependence experiments and molecular dynamics simulation, indicate that Lys20 predominantly plays a role in association, while nearby residues Lys22 and Lys23 appear to be at least as important for complex stability. In contrast, kinetic analyses of residues away from the RNA indicate that they have a minimal effect on association and stability. Thus, well-positioned positively charged residues can be important for both initial complex formation and complex maintenance, illustrating the multiple roles of electrostatic interactions in protein-RNA complexes.


Assuntos
Aminoácidos Básicos/química , RNA Nuclear Pequeno/química , Proteínas de Ligação a RNA/química , Ribonucleoproteína Nuclear Pequena U1/química , Sequência de Aminoácidos , Aminoácidos Básicos/genética , Simulação por Computador , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Cloreto de Sódio/farmacologia , Eletricidade Estática
18.
J Mol Biol ; 341(1): 185-98, 2004 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-15312772

RESUMO

The spliceosomal U1C protein is critical to the initiation and regulation of precursor messenger RNA (pre-mRNA) splicing, as part of the U1 small nuclear ribonucleoprotein particle (snRNP). We have produced full-length and 61 residue constructs of human U1C in soluble form in Escherichia coli. Atomic absorption spectroscopy and mass spectrometry show that both constructs contain one Zn atom and are monomeric. Gelmobility-shift assays showed that one molecule of recombinant U1C, either full-length or 61 residue construct, can be incorporated into the U1 snRNP core domain in the presence of U1 70k. This result is in perfect agreement with the previous experiment with U1C isolated from the HeLa U1 snRNP showing that the recombinant U1C is functionally active. We have determined the solution structure of the N-terminal 61 residue construct of U1C by NMR. A Cys(2)His(2)-type zinc finger, distinct from the TFIIIA-type, is extended at its C terminus by two additional helices. The two Zn-coordinating histidine residues are separated by a five residue loop. The conserved basic residues in the first two helices and the intervening loop may be involved in RNA binding. The opposite beta-sheet face with two surface-exposed Tyr residues may be involved in protein contacts. Both the full-length and 61 residue constructs of human U1C fail to bind RNA containing the 5' splice site sequence, in contrast to what has been reported for the Saccharomyces cerevisiae orthologue.


Assuntos
Ribonucleoproteínas Nucleares Pequenas/química , Spliceossomos/química , Sequência de Aminoácidos , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Sítios de Splice de RNA/fisiologia , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Spliceossomos/metabolismo
19.
EMBO J ; 22(14): 3479-85, 2003 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12853463

RESUMO

The signal recognition particle (SRP) is a ribonucleoprotein particle essential for the targeting of signal peptide-bearing proteins to the prokaryotic plasma membrane or the eukaryotic endoplasmic reticulum membrane for secretion or membrane insertion. SRP binds to the signal peptide emerging from the exit site of the ribosome and forms a ribosome nascent chain (RNC)-SRP complex. The RNC-SRP complex then docks in a GTP-dependent manner with a membrane-anchored SRP receptor and the protein is translocated across or integrated into the membrane through a channel called the translocon. Recently considerable progress has been made in understanding the architecture and function of SRP.


Assuntos
Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Retículo Endoplasmático/metabolismo , Evolução Molecular , Humanos , Proteínas de Membrana/metabolismo , Modelos Biológicos , Modelos Moleculares , Conformação Proteica , Sinais Direcionadores de Proteínas/fisiologia , Transporte Proteico , Ribossomos/metabolismo , Homologia de Sequência de Aminoácidos
20.
Nat Struct Biol ; 9(10): 740-4, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12244299

RESUMO

The eukaryotic signal recognition particle (SRP) is a cytoplasmic ribonucleoprotein particle that targets secretory and membrane proteins to the endoplasmic reticulum. The binding of SRP54 to the S domain of 7SL RNA is highly dependent on SRP19. Here we present the crystal structure of a human SRP ternary complex consisting of SRP19, the M domain of SRP54 and the S domain of 7SL RNA. Upon binding of the M domain of SRP54 to the 7SL RNA-SRP19 complex, the asymmetric loop of helix 8 in 7SL RNA collapses. The bases of the four nucleotides in the long strand of the asymmetric loop continuously stack and interact with the M domain, whereas the two adenines in the short strand flip out and form two A-minor motifs with helix 6. This stabilizing interaction is only possible when helix 6 has been positioned parallel to helix 8 by the prior binding of SRP19 to the tetraloops of helices 6 and 8. Hence, the crystal structure of the ternary complex suggests why SRP19 is necessary for the stable binding of SRP54 to the S domain RNA.


Assuntos
RNA Citoplasmático Pequeno/química , Proteínas de Saccharomyces cerevisiae , Partícula de Reconhecimento de Sinal/química , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli , Humanos , Substâncias Macromoleculares , Dados de Sequência Molecular , Conformação Proteica , RNA Citoplasmático Pequeno/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Partícula de Reconhecimento de Sinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...