Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 27(4): 758-771, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307971

RESUMO

Primary sensory cortices respond to crossmodal stimuli-for example, auditory responses are found in primary visual cortex (V1). However, it remains unclear whether these responses reflect sensory inputs or behavioral modulation through sound-evoked body movement. We address this controversy by showing that sound-evoked activity in V1 of awake mice can be dissociated into auditory and behavioral components with distinct spatiotemporal profiles. The auditory component began at approximately 27 ms, was found in superficial and deep layers and originated from auditory cortex. Sound-evoked orofacial movements correlated with V1 neural activity starting at approximately 80-100 ms and explained auditory frequency tuning. Visual, auditory and motor activity were expressed by different laminar profiles and largely segregated subsets of neuronal populations. During simultaneous audiovisual stimulation, visual representations remained dissociable from auditory-related and motor-related activity. This three-fold dissociability of auditory, motor and visual processing is central to understanding how distinct inputs to visual cortex interact to support vision.


Assuntos
Córtex Auditivo , Córtex Visual Primário , Animais , Camundongos , Estimulação Acústica , Estimulação Luminosa , Percepção Visual/fisiologia , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia
2.
Philos Trans R Soc Lond B Biol Sci ; 378(1886): 20220336, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37545313

RESUMO

The definition of the visual cortex is primarily based on the evidence that lesions of this area impair visual perception. However, this does not exclude that the visual cortex may process more information than of retinal origin alone, or that other brain structures contribute to vision. Indeed, research across the past decades has shown that non-visual information, such as neural activity related to reward expectation and value, locomotion, working memory and other sensory modalities, can modulate primary visual cortical responses to retinal inputs. Nevertheless, the function of this non-visual information is poorly understood. Here we review recent evidence, coming primarily from studies in rodents, arguing that non-visual and motor effects in visual cortex play a role in visual processing itself, for instance disentangling direct auditory effects on visual cortex from effects of sound-evoked orofacial movement. These findings are placed in a broader framework casting vision in terms of predictive processing under control of frontal, reward- and motor-related systems. In contrast to the prevalent notion that vision is exclusively constructed by the visual cortical system, we propose that visual percepts are generated by a larger network-the extended visual system-spanning other sensory cortices, supramodal areas and frontal systems. This article is part of the theme issue 'Decision and control processes in multisensory perception'.


Assuntos
Motivação , Córtex Visual , Percepção Visual/fisiologia , Córtex Visual/fisiologia , Som , Causalidade
3.
Cereb Cortex ; 33(12): 7369-7385, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36967108

RESUMO

Neurons in primary visual cortex (V1) may not only signal current visual input but also relevant contextual information such as reward expectancy and the subject's spatial position. Such contextual representations need not be restricted to V1 but could participate in a coherent mapping throughout sensory cortices. Here, we show that spiking activity coherently represents a location-specific mapping across auditory cortex (AC) and lateral, secondary visual cortex (V2L) of freely moving rats engaged in a sensory detection task on a figure-8 maze. Single-unit activity of both areas showed extensive similarities in terms of spatial distribution, reliability, and position coding. Importantly, reconstructions of subject position based on spiking activity displayed decoding errors that were correlated between areas. Additionally, we found that head direction, but not locomotor speed or head angular velocity, was an important determinant of activity in AC and V2L. By contrast, variables related to the sensory task cues or to trial correctness and reward were not markedly encoded in AC and V2L. We conclude that sensory cortices participate in coherent, multimodal representations of the subject's sensory-specific location. These may provide a common reference frame for distributed cortical sensory and motor processes and may support crossmodal predictive processing.


Assuntos
Córtex Auditivo , Córtex Visual , Ratos , Animais , Reprodutibilidade dos Testes , Neurônios/fisiologia , Córtex Auditivo/fisiologia , Córtex Visual/fisiologia
4.
J Neurosci ; 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35641187

RESUMO

The posterior parietal cortex (PPC) plays a key role in integrating sensory inputs from different modalities to support adaptive behavior. Neuronal activity in PPC reflects perceptual decision making across behavioral tasks, but the mechanistic involvement of PPC is unclear. In an audiovisual change detection task, we tested the hypothesis that PPC is required to arbitrate between the noisy inputs from the two different modalities and help decide in which modality a sensory change occurred. In trained male mice, we found extensive single-neuron and population-level encoding of task-relevant visual and auditory stimuli, trial history, as well as upcoming behavioral responses. However, despite these rich neural correlates, which would theoretically be sufficient to solve the task, optogenetic inactivation of PPC did not affect visual or auditory performance. Thus, in spite of neural correlates faithfully tracking sensory variables and predicting behavioral responses, PPC was not relevant for audiovisual change detection. This functional dissociation questions the role of sensory- and task-related activity in parietal associative circuits during audiovisual change detection. Furthermore, our results highlight the necessity to dissociate functional correlates from mechanistic involvement when exploring the neural basis of perception and behavior.SIGNIFICANCE STATEMENTThe Posterior Parietal Cortex (PPC) is active during many daily tasks, but capturing its function has remained challenging. Specifically, it is proposed to function as an integration hub for multisensory inputs. Here, we tested the hypothesis that, rather than classical cue integration, mouse PPC is involved in the segregation and discrimination of sensory modalities. Surprisingly, even though neural activity tracked current and past sensory stimuli and reflected the ongoing decision-making process, optogenetic inactivation did not affect task performance. Thus, we show an apparent redundancy of sensory and task-related activity in mouse PPC. These results narrow down the function of parietal circuits, as well as direct the search for those neural dynamics that causally drive perceptual decision making.

5.
Nat Commun ; 13(1): 2864, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606448

RESUMO

Primary sensory areas constitute crucial nodes during perceptual decision making. However, it remains unclear to what extent they mainly constitute a feedforward processing step, or rather are continuously involved in a recurrent network together with higher-order areas. We found that the temporal window in which primary visual cortex is required for the detection of identical visual stimuli was extended when task demands were increased via an additional sensory modality that had to be monitored. Late-onset optogenetic inactivation preserved bottom-up, early-onset responses which faithfully encoded stimulus features, and was effective in impairing detection only if it preceded a late, report-related phase of the cortical response. Increasing task demands were marked by longer reaction times and the effect of late optogenetic inactivation scaled with reaction time. Thus, independently of visual stimulus complexity, multisensory task demands determine the temporal requirement for ongoing sensory-related activity in V1, which overlaps with report-related activity.


Assuntos
Córtex Visual , Percepção Visual , Percepção Auditiva/fisiologia , Optogenética , Estimulação Luminosa , Tempo de Reação/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia
6.
Cereb Cortex ; 32(15): 3269-3288, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34849636

RESUMO

Over the past few years, the various areas that surround the primary visual cortex (V1) in the mouse have been associated with many functions, ranging from higher order visual processing to decision-making. Recently, some studies have shown that higher order visual areas influence the activity of the primary visual cortex, refining its processing capabilities. Here, we studied how in vivo optogenetic inactivation of two higher order visual areas with different functional properties affects responses evoked by moving bars in the primary visual cortex. In contrast with the prevailing view, our results demonstrate that distinct higher order visual areas similarly modulate early visual processing. In particular, these areas enhance stimulus responsiveness in the primary visual cortex, by more strongly amplifying weaker compared with stronger sensory-evoked responses (for instance specifically amplifying responses to stimuli not moving along the direction preferred by individual neurons) and by facilitating responses to stimuli entering the receptive field of single neurons. Such enhancement, however, comes at the expense of orientation and direction selectivity, which increased when the selected higher order visual areas were inactivated. Thus, feedback from higher order visual areas selectively amplifies weak sensory-evoked V1 responses, which may enable more robust processing of visual stimuli.


Assuntos
Córtex Visual , Animais , Camundongos , Neurônios/fisiologia , Estimulação Luminosa , Córtex Visual Primário , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia
7.
Neuron ; 106(1): 166-176.e6, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32048995

RESUMO

Essential features of the world are often hidden and must be inferred by constructing internal models based on indirect evidence. Here, to study the mechanisms of inference, we establish a foraging task that is naturalistic and easily learned yet can distinguish inference from simpler strategies such as the direct integration of sensory data. We show that both mice and humans learn a strategy consistent with optimal inference of a hidden state. However, humans acquire this strategy more than an order of magnitude faster than mice. Using optogenetics in mice, we show that orbitofrontal and anterior cingulate cortex inactivation impacts task performance, but only orbitofrontal inactivation reverts mice from an inference-based to a stimulus-bound decision strategy. These results establish a cross-species paradigm for studying the problem of inference-based decision making and begins to dissect the network of brain regions crucial for its performance.


Assuntos
Comportamento Apetitivo/fisiologia , Tomada de Decisões/fisiologia , Giro do Cíngulo/fisiologia , Córtex Pré-Frontal/fisiologia , Reforço Psicológico , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Optogenética , Aprendizagem por Probabilidade , Adulto Jovem
8.
Front Syst Neurosci ; 12: 49, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30364373

RESUMO

Neuronal activity is markedly different across brain states: it varies from desynchronized activity during wakefulness to the synchronous alternation between active and silent states characteristic of deep sleep. Surprisingly, limited attention has been paid to investigating how brain states affect sensory processing. While it was long assumed that the brain was mostly disconnected from external stimuli during sleep, an increasing number of studies indicates that sensory stimuli continue to be processed across all brain states-albeit differently. In this review article, we first discuss what constitutes a brain state. We argue that-next to global, behavioral states such as wakefulness and sleep-there is a concomitant need to distinguish bouts of oscillatory dynamics with specific global/local activity patterns and lasting for a few hundreds of milliseconds, as these can lead to the same sensory stimulus being either perceived or not. We define these short-lasting bouts as micro-states. We proceed to characterize how sensory-evoked neural responses vary between conscious and nonconscious states. We focus on two complementary aspects: neuronal ensembles and inter-areal communication. First, we review which features of ensemble activity are conducive to perception, and how these features vary across brain states. Properties such as heterogeneity, sparsity and synchronicity in neuronal ensembles will especially be considered as essential correlates of conscious processing. Second, we discuss how inter-areal communication varies across brain states and how this may affect brain operations and sensory processing. Finally, we discuss predictive coding (PC) and the concept of multi-level representations as a key framework for understanding conscious sensory processing. In this framework the brain implements conscious representations as inferences about world states across multiple representational levels. In this representational hierarchy, low-level inference may be carried out nonconsciously, whereas high levels integrate across different sensory modalities and larger spatial scales, correlating with conscious processing. This inferential framework is used to interpret several cellular and population-level findings in the context of brain states, and we briefly compare its implications to two other theories of consciousness. In conclusion, this review article, provides foundations to guide future studies aiming to uncover the mechanisms of sensory processing and perception across brain states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...