Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38592805

RESUMO

In the quest for sustainable agricultural practices, there arises an urgent need for alternative solutions to mineral fertilizers and pesticides, aiming to diminish the environmental footprint of farming. Arbuscular mycorrhizal fungi (AMF) emerge as a promising avenue, bestowing plants with heightened nutrient absorption capabilities while alleviating plant stress. Cereal and oilseed crops benefit from this association in a number of ways, including improved growth fitness, nutrient uptake, and tolerance to environmental stresses. Understanding the molecular mechanisms shaping the impact of AMF on these crops offers encouraging prospects for a more efficient use of these beneficial microorganisms to mitigate climate change-related stressors on plant functioning and productivity. An increased number of studies highlighted the boosting effect of AMF on grain and oil crops' tolerance to (a)biotic stresses while limited ones investigated the molecular aspects orchestrating the different involved mechanisms. This review gives an extensive overview of the different strategies initiated by mycorrhizal cereal and oilseed plants to manage the deleterious effects of environmental stress. We also discuss the molecular drivers and mechanistic concepts to unveil the molecular machinery triggered by AMF to alleviate the tolerance of these crops to stressors.

2.
Sci Total Environ ; 918: 170634, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38325456

RESUMO

Microcystins (MCs) are frequently detected in cyanobacterial bloom-impacted waterbodies and introduced into agroecosystems via irrigation water. They are widely known as phytotoxic cyanotoxins, which impair the growth and physiological functions of crop plants. However, their impact on the plant-associated microbiota is scarcely tackled and poorly understood. Therefore, we aimed to investigate the effect of MCs on microbiota-inhabiting bulk soil (BS), root adhering soil (RAS), and root tissue (RT) of Vicia faba when exposed to 100 µg L-1 MCs in a greenhouse pot experiment. Under MC exposure, the structure, co-occurrence network, and assembly processes of the bacterial microbiota were modulated with the greatest impact on RT-inhabiting bacteria, followed by BS and, to a lesser extent, RAS. The analyses revealed a significant decrease in the abundances of several Actinobacteriota-related taxa within the RT microbiota, including the most abundant and known genus of Streptomyces. Furthermore, MCs significantly increased the abundance of methylotrophic bacteria (Methylobacillus, Methylotenera) and other Proteobacteria-affiliated genera (e.g., Paucibacter), which are supposed to degrade MCs. The co-occurrence network of the bacterial community in the presence of MCs was less complex than the control network. In MC-exposed RT, the turnover in community composition was more strongly driven by deterministic processes, as proven by the beta-nearest taxon index. Whereas in MC-treated BS and RAS, both deterministic and stochastic processes can influence community assembly to some extent, with a relative dominance of deterministic processes. Altogether, these results suggest that MCs may reshape the structure of the microbiota in the soil-plant system by reducing bacterial taxa with potential phytobeneficial traits and increasing other taxa with the potential capacity to degrade MCs.


Assuntos
Cianobactérias , Microbiota , Vicia faba , Solo , Microcistinas/toxicidade , Rizosfera , Microbiologia do Solo , Raízes de Plantas/metabolismo
3.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255984

RESUMO

Mycorrhizal symbiosis, the mutually beneficial association between plants and fungi, has gained significant attention in recent years due to its widespread significance in agricultural productivity. Specifically, arbuscular mycorrhizal fungi (AMF) provide a range of benefits to grain and oil crops, including improved nutrient uptake, growth, and resistance to (a)biotic stressors. Harnessing this symbiotic interaction using molecular and systems biology approaches presents promising opportunities for sustainable and economically-viable agricultural practices. Research in this area aims to identify and manipulate specific genes and pathways involved in the symbiotic interaction, leading to improved cereal and oilseed crop yields and nutrient acquisition. This review provides an overview of the research frontier on utilizing molecular and systems biology approaches for harnessing the symbiotic interaction in mycorrhizal symbiosis for grain and oil crop cultivation. Moreover, we address the mechanistic insights and molecular determinants underpinning this exchange. We conclude with an overview of current efforts to harness mycorrhizal diversity to improve cereal and oilseed health through systems biology.


Assuntos
Micorrizas , Simbiose , Grão Comestível , Estruturas Vegetais , Biologia de Sistemas
4.
Environ Sci Pollut Res Int ; 30(33): 80234-80244, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37294489

RESUMO

The health risks linked to the consumption of microcystin-accumulating crops have been increasing worldwide in toxic cyanobloom-occurring regions. The bioaccumulation of microcystins (MCs) in agricultural produce at environmentally realistic concentrations is poorly investigated. In this field study, we assessed the health risks of MCs in raw water used for irrigating fruit crops (bioaccumulation) and watering farm animals in the Lalla Takerkoust agricultural region (Marrakesh, Morocco). Thus, MCs were extracted from water and fruit samples and quantified by enzyme-linked immunosorbent assay in order to calculate the health risk indicators. MCs posed a high health-risk level to poultry and horses, with estimated daily intakes (EDI) being 14- and 19-fold higher than the recommended limits (3.1 and 2.3 µg MC-LR L-1), respectively. Furthermore, pomegranate posed the same level of risk, with EDI being 22- and 53-fold higher than the limit dose (0.04 µg MC-LR kg-1) for adults and children, respectively. There was an urgent need for guidelines regarding water use and management in MC-polluted areas, besides the setup of nature-based tools for toxin removal from raw water used in farming practices. Moreover, MCs could contaminate the human food chain, which implies further investigations of their potential accumulation in livestock- and poultry-based food.


Assuntos
Animais Domésticos , Microcistinas , Criança , Animais , Humanos , Cavalos , Microcistinas/toxicidade , Lagos , Frutas , Irrigação Agrícola , Produtos Agrícolas , Água , Medição de Risco
6.
Microorganisms ; 10(8)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36014043

RESUMO

This study aimed to mitigate salt stress effects on lettuce by using native biostimulants (arbuscular mycorrhizal fungi (M, consortium), plant growth-promoting rhizobacteria (R, Z2, and Z4 strains), and compost (C)) applied alone or in combination under salinity stress (0, 50, and 100 mM NaCl). Physiological, biochemical, nutritional, mycorrhizal, growth, and soil characteristics were evaluated. Results revealed that growth and physiological traits were negatively affected by salinity. However, mycorrhizal colonization was enhanced under 100 mM NaCl after compost application. The applied biostimulants, particularly M and/or R improved the salinity tolerance of lettuce by increasing the dry biomass by 119% and 113% under 100 mM NaCl, respectively, for M and MR treatments. Similarly, MR enhanced stomatal conductance (47%), water content (260%), total chlorophyll (130%), phosphorus content (363%), and reduced the malondialdehyde (54%) and hydrogen peroxide (78%) compared to the control. Moreover, peroxidase activity (76%) and sugar content (36%) were enhanced by CM treatment, while protein (111%) and proline (104%) contents were significantly boosted by R treatment under 100 mM NaCl. Furthermore, glomalin content was enhanced by MR treatment under severe salinity. In conclusion, the applied biostimulants alone or in combination might help lettuce to tolerate salt stress and enhance its production in degraded areas.

7.
Int J Mol Sci ; 23(9)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35563429

RESUMO

Rapid industrialization, mine tailings runoff, and agricultural activities are often detrimental to soil health and can distribute hazardous metal(loid)s into the soil environment, with harmful effects on human and ecosystem health. Plants and their associated microbes can be deployed to clean up and prevent environmental pollution. This green technology has emerged as one of the most attractive and acceptable practices for using natural processes to break down organic contaminants or accumulate and stabilize metal pollutants by acting as filters or traps. This review explores the interactions between plants, their associated microbiomes, and the environment, and discusses how they shape the assembly of plant-associated microbial communities and modulate metal(loid)s remediation. Here, we also overview microbe-heavy-metal(loid)s interactions and discuss microbial bioremediation and plants with advanced phytoremediation properties approaches that have been successfully used, as well as their associated biological processes. We conclude by providing insights into the underlying remediation strategies' mechanisms, key challenges, and future directions for the remediation of metal(loid)s-polluted agricultural soils with environmentally friendly techniques.


Assuntos
Metais Pesados , Microbiota , Poluentes do Solo , Biodegradação Ambiental , Humanos , Metais Pesados/análise , Plantas , Solo
8.
Environ Sci Pollut Res Int ; 29(30): 45683-45697, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35147874

RESUMO

Heavy metal (HM) pollution and the need to preserve the environment have gathered increasing scientific attention. The immobilization of HMs into less-soluble, less mobile, and less toxic forms in addition to the improvement of Medicago sativa L. growth and HMs accumulation were evaluated after the application of marble waste (MW) and/or beneficial PGP rhizobacteria and mycorrhizae to the mining soil compost. A greenhouse assay was conducted to elucidate the influence of both amendment and beneficial microorganisms. The application of marble waste to the soil-compost resulted in decreasing the bioavailability of metals (Cu, Zn, Pb, and Cd), thus ameliorating the installation of the vegetal cover for 6 months of culture. Cultivation of M. sativa under 5% MW-amended soil for 6 months increased the shoot dry weight by almost twofold, while the inoculation with rhizobacteria-mycorrhizae combined with the application of 15% MW resulted in an improvement of 3.5-fold in case of shoot dry weight. In addition, the application of marble waste amendment or their combination with metallo-resistant bacteria resulted in decreasing HM accumulation leading to HM content below the threshold recommended for animal grazing. Thus, the application of amendments and beneficial microorganisms appeared to guarantee the safe cultivation of alfalfa for 6 months of culture. The dual combination amendments and beneficial microorganisms showed the good potential to restore HM polluted soils and could stand as a novel approach for restoration of HM-contaminated soils.


Assuntos
Metais Pesados , Micorrizas , Poluentes do Solo , Animais , Biodegradação Ambiental , Carbonato de Cálcio , Análise Custo-Benefício , Medicago sativa , Metais Pesados/análise , Micorrizas/química , Solo , Poluentes do Solo/análise
9.
Front Plant Sci ; 12: 679916, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777404

RESUMO

The importance of phosphorus in the regulation of plant growth function is well studied. However, the role of the inorganic phosphate (Pi) molecule in the mitigation of abiotic stresses such as drought, salinity, heavy metal, heat, and acid stresses are poorly understood. We revisited peer-reviewed articles on plant growth characteristics that are phosphorus (P)-dependently regulated under the sufficient-P and low/no-P starvation alone or either combined with one of the mentioned stress. We found that the photosynthesis rate and stomatal conductance decreased under Pi-starved conditions. The total chlorophyll contents were increased in the P-deficient plants, owing to the lack of Pi molecules to sustain the photosynthesis functioning, particularly, the Rubisco and fructose-1,6-bisphosphatase function. The dry biomass of shoots, roots, and P concentrations were significantly reduced under Pi starvation with marketable effects in the cereal than in the legumes. To mitigate P stress, plants activate alternative regulatory pathways, the Pi-dependent glycolysis, and mitochondrial respiration in the cytoplasm. Plants grown under well-Pi supplementation of drought stress exhibited higher dry biomass of shoots than the no-P treated ones. The Pi supply to plants grown under heavy metals stress reduced the metal concentrations in the leaves for the cadmium (Cd) and lead (Pb), but could not prevent them from absorbing heavy metals from soils. To detoxify from heavy metal stress, plants enhance the catalase and ascorbate peroxidase activity that prevents lipid peroxidation in the leaves. The HvPIP and PHO1 genes were over-expressed under both Pi starvation alone and Pi plus drought, or Pi plus salinity stress combination, implying their key roles to mediate the stress mitigations. Agronomy Pi-based interventions to increase Pi at the on-farm levels were discussed. Revisiting the roles of P in growth and its better management in agricultural lands or where P is supplemented as fertilizer could help the plants to survive under abiotic stresses.

10.
Microorganisms ; 9(8)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34442826

RESUMO

Frequent toxic cyanoblooms in eutrophic freshwaters produce various cyanotoxins such as the monocyclic heptapeptides microcystins (MCs), known as deleterious compounds to plant growth and human health. Recently, MCs are a recurrent worldwide sanitary problem in irrigation waters and farmland soils due to their transfer and accumulation in the edible tissues of vegetable produce. In such cases, studies about the persistence and removal of MCs in soil are scarce and not fully investigated. In this study, we carried out a greenhouse trial on two crop species: faba bean (Vicia faba var. Alfia 321) and common wheat (Triticum aestivum var. Achtar) that were grown in sterile (microorganism-free soil) and non-sterile (microorganism-rich soil) soils and subjected to MC-induced stress at 100 µg equivalent MC-LR L-1. The experimentation aimed to assess the prominent role of native rhizospheric microbiota in mitigating the phytotoxic impact of MCs on plant growth and reducing their accumulation in both soils and plant tissues. Moreover, we attempted to evaluate the health risk related to the consumption of MC-polluted plants for humans and cattle by determining the estimated daily intake (EDI) and health risk quotient (RQ) of MCs in these plants. Biodegradation was liable to be the main removal pathway of the toxin in the soil; and therefore, bulk soil (unplanted soil), as well as rhizospheric soil (planted soil), were used in this experiment to evaluate the accumulation of MCs in the presence and absence of microorganisms (sterile and non-sterile soils). The data obtained in this study showed that MCs had no significant effects on growth indicators of faba bean and common wheat plants in non-sterile soil as compared to the control group. In contrast, plants grown in sterile soil showed a significant decrease in growth parameters as compared to the control. These results suggest that MCs were highly bioavailable to the plants, resulting in severe growth impairments in the absence of native rhizospheric microbiota. Likewise, MCs were more accumulated in sterile soil and more bioconcentrated in root and shoot tissues of plants grown within when compared to non-sterile soil. Thereby, the EDI of MCs in plants grown in sterile soil was more beyond the tolerable daily intake recommended for both humans and cattle. The risk level was more pronounced in plants from the sterile soil than those from the non-sterile one. These findings suggest that microbial activity, eventually MC-biodegradation, is a crucial bioremediation tool to remove and prevent MCs from entering the agricultural food chain.

11.
Environ Monit Assess ; 193(4): 232, 2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33772660

RESUMO

Soil and mine tailings are unreceptive to plant growth representing an imminent threat to the environment and resource sustainability. Using indigenous plants and their associated rhizobacteria to restore mining sites would be an eco-friendly solution to mitigate soil-metal toxicity. Soil prospection from Draa Sfar and Kettara mining sites in Morocco was carried out during different seasons for native plant sampling and rhizobacteria screening. The sites have been colonized by fifteen tolerant plant species having different capacities to accumulate Cu, Zn, and P in their shoots/root systems. In Draa Sfar mine, Suaeda vera J.F. Gmel., Sarcocornia fruticosa (L.) A.J. Scott., and Frankenia corymbosa Desf. accumulated mainly Cu (more than 90 mg kg-1), Atriplex halimus L. accumulated Zn (mg kg-1), and Frankenia corymbosa Desf. accumulated Pb (14 mg kg-1). As for Kettara mine, Aizoon canariense L. mainly accumulated Zn (270 mg kg-1), whereas Forsskalea tenacissima L. was the best shoot Cu accumulator with up to 50 mg kg-1, whereas Cu accumulation in roots was 21 mg kg-1. The bacterial screening revealed the strains' abilities to tolerate heavy metals up to 50 mg kg-1 Cu, 250 mg kg-1 Pb, and 150 mg kg-1 Zn. Isolated strains belonged mainly to Bacillaceae (73.33%) and Pseudomonadaceae (10%) and expressed different plant growth-promoting traits, alongside their antifungal activity. Results from this study will provide an insight into the ability of native plants and their associated rhizobacteria to serve as a basis for remediation-restoration strategies.


Assuntos
Metais Pesados , Poluentes do Solo , Bactérias , Biodegradação Ambiental , Monitoramento Ambiental , Metais Pesados/análise , Marrocos , Raízes de Plantas/química , Solo , Poluentes do Solo/análise
12.
Toxins (Basel) ; 13(2)2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562776

RESUMO

Microcystins (MCs) produced in eutrophic waters may decrease crop yield, enter food chains and threaten human and animal health. The main objective of this research was to highlight the role of rhizospheric soil microbiota to protect faba bean plants from MCs toxicity after chronic exposure. Faba bean seedlings were grown in pots containing agricultural soil, during 1 month under natural environmental conditions of Marrakech city in Morocco (March-April 2018) and exposed to cyanobacterial extracts containing up to 2.5 mg·L-1 of total MCs. Three independent exposure experiments were performed (a) agricultural soil was maintained intact "exposure experiment 1"; (b) agricultural soil was sterilized "exposure experiment 2"; (c) agricultural soil was sterilized and inoculated with the rhizobia strain Rhizobium leguminosarum RhOF34 "exposure experiment 3". Overall, data showed evidence of an increased sensitivity of faba bean plants, grown in sterilized soil, to MCs in comparison to those grown in intact and inoculated soils. The study revealed the growth inhibition of plant shoots in both exposure experiments 2 and 3 when treated with 2.5 mg·L-1 of MCs. The results also showed that the estimated daily intake (EDI) of MCs, in sterilized soil, exceeded 2.18 and 1.16 times the reference concentrations (0.04 and 0.45 µg of microcysin-leucine arginine (MC-LR). Kg-1 DW) established for humans and cattle respectively, which raises concerns about human food chain contamination.


Assuntos
Irrigação Agrícola , Agentes de Controle Biológico/metabolismo , Proteção de Cultivos , Produtos Agrícolas/microbiologia , Microbiologia de Alimentos , Microcistinas/metabolismo , Rizosfera , Microbiologia do Solo , Vicia faba/microbiologia , Microbiologia da Água , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Abastecimento de Alimentos , Proliferação Nociva de Algas , Medição de Risco , Vicia faba/crescimento & desenvolvimento , Vicia faba/metabolismo
13.
J Environ Sci (China) ; 99: 210-221, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33183699

RESUMO

Assisted natural remediation (ANR) has been highlighted as a promising, less expensive, and environmentally friendly solution to remediate soil contaminated with heavy metals. We tested the effects of three amendments (10% compost, C; 5 or 15% phosphate sludge, PS5 and PS15; and 5 or 15% marble waste, MW5 and MW15) in combination with microorganism inoculation (rhizobacteria consortium alone, mycorrhizae alone, and the two in-combination) on alfalfa in contaminated soil. Plant concentrations of Zn, Cu, and Pb were measured, along with proline and malondialdehyde production. The microbiological and physicochemical properties of the mining soil were evaluated. Application of the amendments allowed germination and promoted growth. Inoculation with the rhizobacteria consortium and/or mycorrhizae stimulated plant growth. PS and MW stimulated the production of proline. Inoculation of alfalfa with the rhizobacteria-mycorrhizae mixture and the application of MW allowed the safe cultivation of the legume, as shown by the low concentrations of metals in plant shoots. Zn and Pb concentrations were below the limits recommended for animal grazing and accumulated essentially in roots. Soil analyses showed the positive effect of the amendments on the soil physicochemical properties. All treatments increased soil pH (around 7), total organic carbon, and assimilable phosphorus content. Notably, an important decrease in soluble heavy metals concentrations was observed. Overall, our findings revealed that the applied treatments reduced the risk of metal-polluted soils limiting plant growth. The ANR has great potential for success in the restoration of polymetallic and acidic mining soils using the interaction between alfalfa, microorganisms, and organo-mineral amendments.


Assuntos
Metais Pesados , Poluentes do Solo , Animais , Carbonato de Cálcio , Metais Pesados/análise , Fosfatos , Esgotos , Solo , Poluentes do Solo/análise
14.
Int J Phytoremediation ; 23(2): 190-201, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32755390

RESUMO

Soil pollution by heavy metals, in the last decades, has become a worldwide major concern for which finding a solution is becoming more important to conserve soil for future generations. This study used an ecotoxicology approach to evaluate the effectiveness of compost and arbuscular mycorrhizal fungus (AMF) and their combination on Medicago sativa performance grown under Zn and Cd stress. At 600 mg/kg of Cd and Zn, a reduction of mycorrhization frequency by 3.6- and 2-fold, respectively, was observed without applying compost. The effect of AMF-Compost combination on alfalfa biomass production was enhanced in the absence and the presence of heavy metals. An improvement of relative water content by 1.7- and 1.5-fold was recorded in case AMF-Compost plant treatments grown under 600 mg/kg of Cd and Zn, respectively. The application of AMF-compost enhanced the stomatal conductance and total chlorophyll in alfalfa plants. Sugar contents were significantly increased in mycorrhized and treated plants with compost compared to the control, regardless of the applied Cd or Zn dose. Phenol content was significantly increased in plants amended with compost alone and treated by Cd. Regarding Cd and Zn accumulation, AMF-compost combination reduced the content of heavy metals accumulated in M. sativa.


Assuntos
Compostagem , Micorrizas , Poluentes do Solo , Biodegradação Ambiental , Cádmio/toxicidade , Medicago sativa , Raízes de Plantas/química , Solo , Poluentes do Solo/análise , Zinco
15.
Front Plant Sci ; 11: 516818, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193464

RESUMO

Rainfall regimes are expected to shift on a regional scale as the water cycle intensifies in a warmer climate, resulting in greater extremes in dry versus wet conditions. Such changes are having a strong impact on the agro-physiological functioning of plants that scale up to influence interactions between plants and microorganisms and hence ecosystems. In (semi)-arid ecosystems, the date palm (Phoenix dactylifera L.) -an irreplaceable tree- plays important socio-economic roles. In the current study, we implemeted an adapted management program to improve date palm development and its tolerance to water deficit by using single or multiple combinations of exotic and native arbuscular mycorrhizal fungi (AMF1 and AMF2 respectively), and/or selected consortia of plant growth-promoting rhizobacteria (PGPR: B1 and B2), and/or composts from grasses and green waste (C1 and C2, respectively). We analyzed the potential for physiological functioning (photosynthesis, water status, osmolytes, mineral nutrition) to evolve in response to drought since this will be a key indicator of plant resilience in future environments. As result, under water deficit, the selected biofertilizers enhanced plant growth, leaf water potential, and electrical conductivity parameters. Further, the dual-inoculation of AMF/PGPR amended with composts alone or in combination boosted the biomass under water deficit conditions to a greater extent than in non-inoculated and/or non-amended plants. Both single and dual biofertilizers improved physiological parameters by elevating stomatal conductance, photosynthetic pigments (chlorophyll and carotenoids content), and photosynthetic efficiency. The dual inoculation and compost significantly enhanced, especially under drought stress, the concentrations of sugar and protein content, and antioxidant enzymes (polyphenoloxidase and peroxidase) activities as a defense strategy as compared with controls. Under water stress, we demonstrated that phosphorus was improved in the inoculated and amended plants alone or in combination in leaves (AMF2: 807%, AMF1+B2: 657%, AMF2+C1+B2: 500%, AMF2+C2: 478%, AMF1: 423%) and soil (AMF2: 397%, AMF1+B2: 322%, AMF2+C1+B2: 303%, AMF1: 190%, C1: 188%) in comparison with controls under severe water stress conditions. We summarize the extent to which the dual and multiple combinations of microorganisms can overcome challenges related to drought by enhancing plant physiological responses.

16.
Microorganisms ; 8(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143245

RESUMO

Salinity is one of the devastating abiotic stresses that cause reductions in agricultural production. The increased salinization affects alfalfa growth, metabolism, and rhizobium capacity for symbiotic N2 fixation negatively. This study was undertaken to investigate the efficiency of green compost (C; made from green waste), arbuscular mycorrhizal fungi (M; field-sourced native consortium), and/or rhizobium (R; a salt-tolerant rhizobium strain) individually or in combination as an effective strategy to improve alfalfa productivity under non-saline and high-saline (120 mM NaCl) conditions. In addition, we aimed to understand the agro-physiological and metabolic basis as well as glomalin content in the soil of biofertilizers-induced salt tolerance in alfalfa. Here, we show that mycorrhizal infection was enhanced after MR inoculation, while C application decreased it significantly. Salinity reduced growth, physiological functioning, and protein concentration, but the antioxidant system has been activated. Application of the selected biofertilizers, especially C alone or combined with M and/or R improved alfalfa tolerance. The tri-combination CMR mitigated the negative effects of high salinity by stimulating plant growth, roots and nodules dry matters, mineral uptake (P, N, and K), antioxidant system, synthesis of compatible solutes, and soil glomalin content, sustaining photosynthesis-related performance and decreasing Na+ and Cl- accumulation, lipid peroxidation, H2O2 content, and electrolyte leakage.

17.
Sci Total Environ ; 729: 139020, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32498175

RESUMO

Increased global warming, caused by climate change and human activities, will seriously hinder plant development, such as increasing salt concentrations in soils, which will limit water availability for plants. To ensure optimal plant growth under such changing conditions, microorganisms that improve plant growth and health must be integrated into agricultural practices. In the present work, we examined the fate of Vicia faba microbiota structure and interaction network upon inoculation with plant-nodulating rhizobia (Rhizobium leguminosarum RhOF125) and non-nodulating strains (Paenibacillus mucilaginosus BLA7 and Ensifer meliloti RhOL1) in the presence (or absence) of saline stress. Inoculated strains significantly improved plant tolerance to saline stress, suggesting either a direct or indirect effect on the plant response to such stress. To determine the structure of microbiota associated with V. faba, samples of the root-adhering soil (RAS), and the root tissues (RT) of seedlings inoculated (or not) with equal population size of RhOF125, BLA7 and RhOL1 strains and grown in the presence (or absence) of salt, were used to profile the microbial composition by 16S rRNA gene sequencing. The inoculation did not show a significant impact on the composition of the RT microbiota or RAS microbiota. The saline stress shifted the RAS microbiota composition, which correlated with a decrease in Enterobacteriaceae and an increase in Sphingobacterium, Chryseobacterium, Stenotrophomonas, Agrobacterium and Sinorhizobium. When the microbiota of roots and RAS are considered together, the interaction networks for each treatment are quite different and display different key populations involved in community assembly. These findings indicate that upon seed inoculation, community interaction networks rather than their composition may contribute to helping plants to better tolerate environmental stresses. The way microbial populations interfere with each other can have an impact on their functions and thus on their ability to express the genes required to help plants tolerate stresses.


Assuntos
Vicia faba , Bactérias , Humanos , Consórcios Microbianos , Interações Microbianas , Raízes de Plantas , RNA Ribossômico 16S , Microbiologia do Solo
18.
Microorganisms ; 7(7)2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31336693

RESUMO

Soil contamination with heavy metals is a constraint for plant establishment and development for which phytoremediation may be a solution, since rhizobacteria may alleviate plant stress under these conditions. A greenhouse experiment was conducted to elucidate the effect of toxic metals on growth, the activities of ROS (reactive oxygen species)-scavenging enzymes, and gene expression of Medicago sativa grown under different metal and/or inoculation treatments. The results showed that, besides reducing biomass, heavy metals negatively affected physiological parameters such as chlorophyll fluorescence and gas exchange, while increasing ROS-scavenging enzyme activities. Inoculation of M. sativa with a bacterial consortium of heat- and metallo-resistant bacteria alleviated metal stress, as deduced from the improvement of growth, lower levels of antioxidant enzymes, and increased physiological parameters. The bacteria were able to effectively colonize and form biofilms onto the roots of plants cultivated in the presence of metals, as observed by scanning electron microscopy. Results also evidenced the important role of glutathione reductase (GR), phytochelatin synthase (PCS), and metal transporter NRAMP1 genes as pathways for metal stress management, whereas the gene coding for cytochrome P450 (CP450) seemed to be regulated by the presence of the bacteria. These outcomes showed that the interaction of metal-resistant rhizobacteria/legumes can be used as an instrument to remediate metal-contaminated soils, while cultivation of inoculated legumes on these soils is still safe for animal grazing, since inoculation with bacteria diminished the concentrations of heavy metals accumulated in the aboveground parts of the plants to below toxic levels.

19.
Biol Open ; 8(7)2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31278162

RESUMO

In recent years, more attention has been paid to plant growth promoting (PGP) rhizobacteria use as a biofertilizer alternative to chemical fertilizers, which might cause damage to the environment. The main objective of this work was to evaluate the field application of PGP bacteria and rhizobial strains on the productivity of two food crops extensively used in Morocco; Vicia faba L. and Triticum durum L. A field experiment with four treatments was designed: (1) control without inoculation, (2) PGP bacteria alone (P), (3) rhizobia alone (R) and (4) a mixture of PGP-rhizobia (PR). Furthermore, the PGP strains were tested for their ability to solubilize complex mineral phosphorus and potassium and for their production of indole acetic acid and exopolysaccharides. The strains showed several plant growth promoting traits. Field inoculation by these rhizobacteria improved phosphorus uptake and the agronomic parameters of faba bean and wheat plants, such as biomass of shoots and roots, as well as the weight of bean pods and wheat spikes. The most pronounced effect was displayed by rhizobial strains or the combination of PGP-rhizobia. The rhizobacterial inoculation significantly stimulated the growth of both crops and could be used as potential biofertilizers to optimize growth and phosphorus retention capacity.

20.
Front Microbiol ; 10: 1106, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164880

RESUMO

Plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) are known for their beneficial effects. In recent years, more attention has been paid to their use as biofertilizers to reduce the use of chemical fertilizers causing significant damage to the environment. To have high plant yields, biofertilizers may not be able to sustain plant demands and could be used in combination with chemical fertilizers. However, the application of biofertilizers in the field such as rhizobacteria and AMF are understudied and powerfully needed. In this context, this study aims to evaluate the effect of inoculation with rhizobacteria and AMF and their potential to stimulate two of the most economically important crops in Mediterranean semi-arid areas (Vicia faba L. and Triticum durum L.). The effect of inoculation was studied in field experiment with six treatments: (i) the control without inoculation (C), (ii) PGPR alone (PG), (iii) rhizobia alone (R), (iv) the mixture of PGPR and rhizobia (PR), (v) AMF alone (M), and (vi) the mixture of PGPR, rhizobia and AMF (PRM). The inoculation with the consortium of PGPR-rhizobia-AMF (PRM) induced the greatest effect. This inoculation improved the growth parameters (dry weight of shoots and roots) of faba bean and wheat. An improvement of 130, 200, and 78% was observed in V. faba shoot and root dry weight, and the number of leaves, respectively. Similarly, shoot and root dry weight and number of leaves of T. durum were enhanced by 293, 258, and 87%, respectively. The inoculation improved the productivity of studied plants presented by the number and weight of bean pods (270 × 104 ha-1 and 30737.5 kg.ha-1) and wheat spikes (440 × 104 ha-1 and 10560 kg.ha-1). In addition, the mineral analyses showed that the inoculation with PGPR-rhizobia-mycorrhizae improved N, P, Ca, K, and Na shoots contents, as well as the contents of sugar and proteins. Finally, we revealed the positive impact of the tested biofertilizers and the interest of adoption of innovative practices improving crops productivity and soil fertility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...