Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 10(3): 928-937, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38334357

RESUMO

Clostridioides difficile causes life-threatening diarrhea and is one of the leading causes of nosocomial infections. During infection, C. difficile releases two gut-damaging toxins, TcdA and TcdB, which are the primary determinants of disease pathogenesis and are important therapeutic targets. Once in the cytosol of mammalian cells, TcdA and TcdB use UDP-glucose to glucosylate host Rho GTPases, which leads to cytoskeletal changes that result in a loss of intestinal integrity. Isofagomine inhibits TcdA and TcdB as a mimic of the glucocation transition state of the glucosyltransferase reaction. However, sequence variants of TcdA and TcdB across the clades of infective C. difficile continue to be identified, and therefore, evaluation of isofagomine inhibition against multiple toxin variants is required. Here, we show that isofagomine inhibits the glucosyltransferase domain of multiple TcdB variants and protects TcdB-induced cell rounding of the most common full-length toxin variants. Furthermore, we demonstrate that isofagomine protects against C. difficile-induced mortality in two murine models of C. difficile infection. Isofagomine treatment of mouse C. difficile infection also permitted the recovery of the gastrointestinal microbiota, an important barrier to preventing recurring C. difficile infection. The broad specificity of isofagomine supports its potential as a prophylactic to protect against C. difficile-induced morbidity and mortality.


Assuntos
Toxinas Bacterianas , Compostos de Boro , Clostridioides difficile , Imino Piranoses , Animais , Camundongos , Toxinas Bacterianas/genética , Enterotoxinas , Clostridioides difficile/genética , Proteínas de Bactérias/genética , Glucosiltransferases/genética , Mamíferos
2.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37781587

RESUMO

Clostridioides difficile causes life-threatening diarrhea and is the leading cause of healthcare associated bacterial infections in the United States. During infection, C. difficile releases the gut-damaging toxins, TcdA and TcdB, the primary determinants of disease pathogenesis and are therefore therapeutic targets. TcdA and TcdB contain a glycosyltransferase domain that uses UDP-glucose to glycosylate host Rho GTPases, causing cytoskeletal changes that result in a loss of intestinal integrity. Isofagomine inhibits TcdA and TcdB as a mimic of the oxocarbenium ion transition state of the glycosyltransferase reaction. However, sequence variants of TcdA and TcdB across the clades of infective C. difficile continue to be identified and therefore, evaluation of isofagomine inhibition against multiple toxin variants are required. Here we show that Isofagomine inhibits the glycosyltransferase activity of multiple TcdB variants and also protects TcdB toxin-induced cell rounding of the most common full-length toxin variants. Further, isofagomine protects against C. difficile induced mortality in two murine models of C. difficile infection. Isofagomine treatment of mouse C. difficile infection permitted recovery of the gastrointestinal microbiota, an important barrier to prevent recurring C. difficile infection. The broad specificity of isofagomine supports its potential as a prophylactic to protect against C. difficile induced morbidity and mortality.

3.
J Med Chem ; 65(7): 5462-5494, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35324190

RESUMO

Hypermethylation of CpG regions by human DNA methyltransferase 1 (DNMT1) silences tumor-suppression genes, and inhibition of DNMT1 can reactivate silenced genes. The 5-azacytidines are approved inhibitors of DNMT1, but their mutagenic mechanism limits their utility. A synthon approach from the analogues of S-adenosylhomocysteine, methionine, and deoxycytidine recapitulated the chemical features of the DNMT1 transition state in the synthesis of 16 chemically stable transition-state mimics. Inhibitors causing both full and partial inhibition of purified DNMT1 were characterized. The inhibitors show modest selectivity for DNMT1 versus DNMT3b. Active-site docking predicts inhibitor interactions with S-adenosyl-l-methionine and deoxycytidine regions of the catalytic site, validated by direct binding analysis. Inhibitor action with purified DNMT1 is not reflected in cultured cells. A partial inhibitor activated cellular DNA methylation, and a full inhibitor had no effect on cellular DNA methylation. These compounds provide chemical access to a new family of noncovalent DNMT chemical scaffolds for use in DNA methyltransferases.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , Linhagem Celular , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilases de Modificação do DNA/metabolismo , Desoxicitidina/metabolismo , Humanos
4.
Bioorg Med Chem Lett ; 25(4): 830-3, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25597004

RESUMO

To further extend the scope of iminosugar biological activity, a systematic structure-activity relationship investigation has been performed by synthesizing and evaluating as cholinesterase inhibitors a library of twenty-three iminoalditols with different substitutions and stereochemistry patterns. These compounds have been evaluated in vitro for the inhibition of cholinesterases (different sources of acetylcholinesterase and butyrylcholinesterase). Some compounds have IC50 values in the micromolar range and display significant inhibition selectivity for butyrylcholinesterase over acetylcholinesterase. These are the first examples of iminosugar-based inhibitors of cholinesterases.


Assuntos
Inibidores da Colinesterase/química , Imino Açúcares/química , Imino Açúcares/farmacologia , Inibidores da Colinesterase/farmacologia , Relação Estrutura-Atividade
5.
ChemMedChem ; 9(12): 2647-52, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25377381

RESUMO

Several families of iminosugar-based galactoside mimics were designed, synthesized, and evaluated as galactocerebrosidase (GALC) inhibitors. They were also tested as inhibitors of lysosomal ß- and α-galactosidases in order to find new potent and selective pharmacological chaperones for treatment of the lysosomal storage disorder, Krabbe disease. Whereas 1-C-alkyl imino-L-arabinitols are totally inactive toward the three enzymes, 1-C-alkyl imino-D-galactitols were found to be active only toward α-galactosidase A. Finally, 1-N-iminosugars provided the best results, as 4-epi-isofagomine was found to be a good inhibitor of both lysosomal ß-galactosidase and GALC. Further elaboration of this structure is required to achieve selectivity between these two galactosidases.


Assuntos
Galactosídeos/química , Galactosilceramidase/antagonistas & inibidores , Imino Açúcares/química , alfa-Galactosidase/antagonistas & inibidores , beta-Galactosidase/antagonistas & inibidores , Galactosilceramidase/metabolismo , Humanos , Imino Piranoses/antagonistas & inibidores , Imino Piranoses/metabolismo , Imino Açúcares/metabolismo , Imino Açúcares/uso terapêutico , Leucodistrofia de Células Globoides/tratamento farmacológico , Lisossomos/enzimologia , Ligação Proteica , Relação Estrutura-Atividade , alfa-Galactosidase/metabolismo , beta-Galactosidase/metabolismo
6.
ChemMedChem ; 6(2): 353-61, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21275057

RESUMO

A series of O-alkyl iminoxylitol derivatives was synthesized and evaluated as ß-glucocerebrosidase (GCase) inhibitors. This structure-activity study shows a dramatic influence of the position of the alkyl chain (α-C1, O2, O3, or O4) on human GCase inhibition. Remarkably, 1,2-shift of the alkyl chain from C1 to O2 was found to maintain high inhibitory potency toward GCase as well as chaperone activity at sub-inhibitory concentration (10 nM). Removal of the stereogenic center at the pseudo-anomeric position led to shorter and more practical synthetic sequences. 2-O-Alkyl iminoxylitol derivatives constitute a new promising class of leads for the treatment of Gaucher disease by means of pharmacological chaperone therapy.


Assuntos
Doença de Gaucher/tratamento farmacológico , Xilitol/uso terapêutico , Cromatografia Líquida , Humanos , Estereoisomerismo , Xilitol/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...