Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 5(18): 4696-4702, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37705792

RESUMO

Germanium (Ge) is increasingly used as a substrate for high-performance optoelectronics, photovoltaics, and electronic devices. These devices are usually grown on thick and rigid Ge substrates manufactured by classical wafering techniques. Nanomembranes (NMs) provide an alternative to this approach while offering wafer-scale lateral dimensions, weight reduction, waste limitation, and cost effectiveness. Herein, we introduce the Porous germanium Efficient Epitaxial LayEr Release (PEELER) process, which consists of the fabrication of wafer-scale detachable Ge NMs on porous Ge (PGe) and substrate reuse. We demonstrate the growth of Ge NMs with monocrystalline quality as revealed by high-resolution transmission electron microscopy (HRTEM) characterization. Together with the surface roughness below 1 nm, it makes the Ge NMs suitable for growth of III-V materials. Additionally, the embedded nanoengineered weak layer enables the detachment of the Ge NMs. Finally, we demonstrate the wet-etch-reconditioning process of the Ge substrate, allowing its reuse, to produce multiple free-standing NMs from a single parent wafer. The PEELER process significantly reduces the consumption of Ge in the fabrication process, paving the way for a new generation of low-cost flexible optoelectronic devices.

2.
Nanomaterials (Basel) ; 10(7)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709054

RESUMO

We report on the achievement of novel photovoltaic devices based on the pulsed laser deposition (PLD) of p-type Cu2ZnSnS4 (CZTS) layers onto n-type silicon nanowires (SiNWs). To optimize the photoconversion efficiency of these p-CZTS/n-SiNWs heterojunction devices, both the thickness of the CZTS films and the length of the SiNWs were independently varied in the (0.3-1.0 µm) and (1-6 µm) ranges, respectively. The kësterite CZTS films were directly deposited onto the SiNWs/Si substrates by means of a one-step PLD approach at a substrate temperature of 300 °C and without resorting to any post-sulfurization process. The systematic assessment of the PV performance of the ITO/p-CZTS/n-SiNWs/Al solar cells, as a function of both SiNWs' length and CZTS film thickness, has led to the identification of the optimal device characteristics. Indeed, an unprecedented power conversion efficiency (PCE) as high as ~5.5%, a VOC of 400 mV, a JSC of 26.3 mA/cm2 and a FF of 51.8% were delivered by the devices formed by SiNWs having a length of 2.2 µm along with a CZTS film thickness of 540 nm. This PCE value is higher than the current record efficiency (of 5.2%) reported for pulsed-laser-deposited-CZTS (PLD-CZTS)-based solar cells with the classical SLG/Mo/CZTS/CdS/ZnO/ITO/Ag/MgF2 device architecture. The relative ease of depositing high-quality CZTS films by means of PLD (without resorting to any post deposition treatment) along with the gain from an extended CZTS/Si interface offered by the silicon nanowires make the approach developed here very promising for further integration of CZTS with the mature silicon nanostructuring technologies to develop novel optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...