Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrasonics ; 40(1-8): 247-51, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12159941

RESUMO

This research deals with a non-destructive method for characterizing the degraded cover of concrete structures using high-frequency ultrasound (0.5-1 MHz). Although such a frequency range is unusual in civil engineering, it is well suited to the kind of defect to be detected, as it corresponds to a thin near-to-surface layer with increased porosity and density of microcracks. In order to assess the feasibility of detecting concrete cover degradation, velocity and attenuation measurements were made on both halves of a concrete slab. One half was immersed into an acid solution for 15-45 days, while the other half remained sound. These measurements were made for longitudinal, transverse and surface waves. The results obtained show a 23% decrease of ultrasonic pulse velocity and a 1000% increase of attenuation in the degraded material relative to the sound material. It is thus possible to detect and characterize concrete cover degradation using high-frequency ultrasound. Although attenuation measurements in heterogeneous media are difficult, their sensitivity to degradation is very high.

2.
Ultrasonics ; 40(1-8): 77-82, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12160042

RESUMO

In this paper, we address the problem of evaluating the acoustic attenuation of "difficult" media, i.e. highly attenuating and scattering media. In a broadband, through transmission setup, the signals acquired from such media are characterized by a poor signal-to-noise ratio. Therefore, an accurate estimate of attenuation cannot be obtained from a single measurement, but multiple measurements must be combined. Two methods are considered to yield a single estimate of attenuation from multiple measurements. The first one, the "average attenuation" (AA) method, consists in a simple average of individual attenuation estimates. The second one, the "cross spectrum" (CS) method, is based on a system identification approach. In order to evaluate the estimation errors for these methods, ultrasonic signals transmitted through a material of known attenuation were simulated and mixed with both coherent and incoherent noise. In all tests performed, the "CS" method was found to yield the most accurate estimate. This method, combined time delay compensation, is then applied to real signals measured from a concrete slab. A valid frequency band for the attenuation estimate can be defined based on the coherence function. Results from this research are being applied to characterize the degradation of concrete structures using high-frequency ultrasound.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...