Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 19374, 2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371535

RESUMO

The important feature of the current work is to consider the pressure variation, heat transport, and friction drag in the hydromagnetic radiative two-dimensional flow of a hybrid nanofluid depending on the viscous dissipation and Joule heating across a curved surface. The curved surface has been considered with the binary heating process called as prescribed heat flux and surface temperature. The basic partial differential equation (PDEs) has been converted into the non-dimensional ordinary differential equations (ODEs) by applying some specified dimensionless transformations. The bvp4c built-in package in MATLAB has been considered to find the numerical solution of the consequential equations. The graphical results have been plotted in terms of pressure, friction drag, velocity, temperature, and heat transport. Several important results have also been plotted for the plan level surface [Formula: see text]The condition of [Formula: see text]. It is found that the heat transport rate respectively reduces and enhances with the enhancement of radiation parameter and Hartmann number as well as the friction drag is enhancing with the high-volume fraction of nanoparticles and Hartmann number. Moreover, enhancing curvature parameter, enhances the friction drag and declines the heat transport rate. The current work renders uncountable applications in several engineering and industrial systems like electronic bulbs, electric ovens, geysers, soil pollution, electric kettle, fibrous insulation, etc. Moreover, the heating as well as the cooling systems of electrical, digital, and industrial instruments, are controlled by the heat transport in fluids. Thus, it is important to use such flows in these types of instruments.

2.
Micromachines (Basel) ; 13(4)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35457893

RESUMO

The flow of an electroconductive incompressible ternary hybrid nanofluid with heat conduction in a boundary layer including metallic nanoparticles (NPs) over an extended cylindrical with magnetic induction effects is reported in this research. The ternary hybrid nanofluid has been synthesized with the dispersion of titanium dioxide, cobalt ferrite, and magnesium oxide NPs in the base fluid water. For a range of economical and biological applications, a computational model is designed to augment the mass and energy conveyance rate and promote the performance and efficiency of thermal energy propagation. The model has been written as a system of partial differential equations. Which are simplified to the system of ordinary differential equations through similarity replacements. The computing approach parametric continuation method is used to further process the resultant first order differential equations. The results are validated with the bvp4c package for accuracy and validity. The outcomes are displayed and analyzed through Figures and Tables. It has been observed that the inverse Prandtl magnetic number and a larger magnetic constant reduce the fluid flow and elevate the energy profile. The variation of ternary hybrid NPs significantly boosts the thermophysical features of the base fluid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...