Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 22(5): 1901-1909, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33797889

RESUMO

A dielectric medium containing noncentrosymmetric domains can exhibit piezoelectric and second-harmonic generation (SHG) responses when an electric field is applied. Since many crystalline biopolymers have noncentrosymmetric structures, there has been a great deal of interest in exploiting their piezoelectric and SHG responses for electromechanical and electro-optic devices, especially owing to their advantages such as biocompatibility and low density. However, exact mechanisms or origins of such polarization responses of crystalline biopolymers remain elusive due to the convolution of responses from multiple domains with varying degrees of structural disorder or difficulty of ensuring the unidirectional alignment of noncentrosymmetric domains. In this study, we investigate the polarization responses of a noncentrosymmetric crystalline biopolymer, namely, unidirectionally aligned ß-chitin crystals interspersed in the amorphous protein matrix, which can be obtained naturally from tubeworm Lamellibrachia satsuma (LS) tube. The mechanisms governing polarization responses in different dynamic regimes covering optical (>1013 Hz), acoustic/ultrasonic (103-105 Hz), and low (10-2-102 Hz) frequencies are explained. Relationships between the polarization responses dominant in different frequencies are addressed. Also, electromechanical coupling responses, including piezoelectricity of the LS tube, are quantitatively discussed. The findings of this study can be applicable to other noncentrosymmetric crystalline biopolymers, elucidating their polarization responses.


Assuntos
Quitina , Eletricidade
2.
ACS Appl Bio Mater ; 1(4): 936-953, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34996135

RESUMO

Electromechanical coupling properties of biological materials, especially cellulose from plant cell walls and proteins from animals, are of great interest for applications in biocompatible sensors and actuators and ecofriendly energy harvesters. On the basis of their anisotropic nanostructures, cellulose and fibrous proteins such as collagen, silk, keratin, etc. are expected to be piezoelectric; however, this property does not necessarily translate to cellulose- or protein-containing bulk materials. In fact, the values of piezoelectric coefficients reported for cellulose and proteins in the literature vary over several orders of magnitude, which raises the question of whether these are truly intrinsic piezoelectric properties of biological materials or whether they are obscured with other electromechanical coupling processes such as electrostriction, flexoelectricity, electrochemical transport, or electrostatic deformation. This critical question about intrinsic and extrinsic electromechanical coupling mechanisms is reviewed in this article. The origin of piezoelectricity of cellulose and collagen (the most widely studied protein for piezoelectricity) is discussed based on their molecular structures. Key requirements to construct macroscopic piezoelectric biocomposites are addressed in terms of packing orders or arrangements of polar domains in composites. On the basis of this structural argument, truly piezoelectric responses of macroscopic materials fabricated with or containing cellulose and collagen are found to be extremely difficult to observe or quantify; most values reported in the literature as piezoelectric coefficients of such materials appear to originate from other electromechanical coupling mechanisms. Clarifying these mechanisms is important to properly design electromechanical devices using biobased materials.

3.
ACS Appl Mater Interfaces ; 6(12): 9418-25, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24848447

RESUMO

This work aims to study how the magnitude, frequency, and duration of an AC electric field affect the orientation of two kinds of nanofibrillated cellulose (NFC) dispersed in silicone oil that differ by their surface charge density and aspect ratio. In both cases, the electric field alignment occurs in two steps: first, the NFC makes a gyratory motion oriented by the electric field; second, NFC interacts with itself to form chains parallel to the electric field lines. It was also observed that NFC chains become thicker and longer when the duration of application of the electric field is increased. In-situ dielectric properties have shown that the dielectric constant of the medium increases in comparison to the randomly dispersed NFC (when no electric field is applied). The optimal parameters of alignment were found to be 5000 Vpp/mm and 10 kHz for a duration of 20 min for both kinds of NFC. The highest increase in dielectric constant was achieved with NFC oxidized for 5 min (NFC-O-5 min) at the optimum conditions mentioned above.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...