Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 2187, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366903

RESUMO

A possible malaria control approach involves the dissemination in mosquitoes of inherited symbiotic microbes to block Plasmodium transmission. However, in the Anopheles gambiae complex, the primary African vectors of malaria, there are limited reports of inherited symbionts that impair transmission. We show that a vertically transmitted microsporidian symbiont (Microsporidia MB) in the An. gambiae complex can impair Plasmodium transmission. Microsporidia MB is present at moderate prevalence in geographically dispersed populations of An. arabiensis in Kenya, localized to the mosquito midgut and ovaries, and is not associated with significant reductions in adult host fecundity or survival. Field-collected Microsporidia MB infected An. arabiensis tested negative for P. falciparum gametocytes and, on experimental infection with P. falciparum, sporozoites aren't detected in Microsporidia MB infected mosquitoes. As a microbe that impairs Plasmodium transmission that is non-virulent and vertically transmitted, Microsporidia MB could be investigated as a strategy to limit malaria transmission.


Assuntos
Anopheles/parasitologia , Malária Falciparum/parasitologia , Mosquitos Vetores/parasitologia , Plasmodium falciparum/fisiologia , Animais , Anopheles/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Quênia , Malária Falciparum/prevenção & controle , Malária Falciparum/transmissão , Microsporídios/fisiologia , Controle de Mosquitos/métodos , Mosquitos Vetores/microbiologia , Esporozoítos/fisiologia , Simbiose
2.
Vector Borne Zoonotic Dis ; 20(6): 444-453, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155389

RESUMO

Background: Zoophilic mosquitoes play an important role in the transmission of arboviruses of medical importance at human-wildlife interfaces, yet arbovirus surveillance efforts have been focused mostly on anthropophilic mosquitoes. Understanding the diversity of zoophilic mosquitoes and their associated feeding patterns and arboviruses can inform better vector control strategies. Materials and Methods: We morphologically identified mosquitoes collected from two game reserves in Kenya, the Maasai Mara National Reserve (MMNR) and locations near the Shimba Hills National Reserve (SHNR). Representative mosquitoes were also identified by cytochrome c oxidase subunit 1 (COI) barcode sequencing. In addition, we identified the vertebrate hosts of mosquito blood meals from the contents of each mosquito's abdomen by high-resolution melting (HRM) analysis and sequencing of COI, 16S ribosomal RNA, and cytochrome b gene PCR products. Similarly, mosquito arbovirus infections were identified by HRM analysis and sequencing of Alphavirus- and Flavivirus-specific RT-PCR products. Results: Of 2858 mosquitoes collected, 51 were engorged with blood meals from seven different vertebrate hosts, including humans, birds, domestic, and peridomestic animals and wildlife. Culex was the most abundant mosquito genus, with Culex pipiens being the most abundant species in both study regions. Among MMNR samples, we detected dengue serotype-2 virus (DENV-2) for the first time in Aedes tarsalis and Aedes tricholabis, as well as Sindbis virus in male Cx. pipiens. We also detected DENV-2 in Aedes aegypti sampled from locations near the SHNR. Human and diverse wildlife blood meals were identified, including bushbuck blood in the dengue-infected Ae. tarsalis and both human and hippopotamus blood in a single Eretmapodites chrysogaster mosquito. Conclusions: Our findings highlight the potential risk of sylvatic dengue and Sindbis transmission to humans by zoophilic mosquitoes at human-wildlife interfaces in Africa. Of specific importance, we provide evidence of sylvatic DENV-2 in Ae. tarsalis and Ae. tricholabis, representing potential new dengue vectors.


Assuntos
Animais Selvagens/sangue , Arbovírus/isolamento & purificação , Culicidae/virologia , DNA/sangue , DNA/genética , Gado/sangue , Animais , Arbovírus/genética , Culicidae/classificação , Culicidae/fisiologia , Humanos , Quênia , Mosquitos Vetores , Filogenia , Especificidade da Espécie
3.
Sci Rep ; 10(1): 4741, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179808

RESUMO

Reliable molecular identification of vertebrate species from morphologically unidentifiable tissue is critical for the prosecution of illegally-traded wildlife products, conservation-based biodiversity research, and identification of blood-meal hosts of hematophagous invertebrates. However, forensic identification of vertebrate tissue relies on sequencing of the mitochondrial cytochrome oxidase I (COI) 'barcode' gene, which remains costly for purposes of screening large numbers of unknown samples during routine surveillance. Here, we adapted a rapid, low-cost approach to differentiate 10 domestic and 24 wildlife species that are common in the East African illegal wildlife products trade based on their unique high-resolution melting profiles from COI, cytochrome b, and 16S ribosomal RNA gene PCR products. Using the approach, we identified (i) giraffe among covertly sampled meat from Kenyan butcheries, and (ii) forest elephant mitochondrial sequences among savannah elephant reference samples. This approach is being adopted for high-throughput pre-screening of potential bushmeat samples in East African forensic science pipelines.


Assuntos
Animais Selvagens/genética , Biodiversidade , DNA Mitocondrial/genética , Genética Forense/métodos , Ensaios de Triagem em Larga Escala/métodos , Reação em Cadeia da Polimerase/métodos , Vertebrados/genética , Animais , Conservação dos Recursos Naturais , Citocromos b/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Elefantes/genética , Girafas/genética , Quênia , Mitocôndrias/enzimologia , RNA Ribossômico 16S/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...