Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rep Prog Phys ; 83(4): 047101, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31923911

RESUMO

Natural visual systems have inspired scientists and engineers to mimic their intriguing features for the development of advanced photonic devices that can provide better solutions than conventional ones. Among various kinds of natural eyes, researchers have had intensive interest in mammal eyes and compound eyes due to their advantages in optical properties such as focal length tunability, high-resolution imaging, light intensity modulation, wide field of view, high light sensitivity, and efficient light management. A variety of different approaches in the broad field of science and technology have been tried and succeeded to duplicate the functions of natural eyes and develop bioinspired photonic devices for various applications. In this review, we present a comprehensive overview of bioinspired artificial eyes and photonic devices that mimic functions of natural eyes. After we briefly introduce visual systems in nature, we discuss optical components inspired by the mammal eyes, including tunable lenses actuated with different mechanisms, curved image sensors with low aberration, and light intensity modulators. Next, compound eye inspired photonic devices are presented, such as microlenses and micromirror arrays, imaging sensor arrays on curved surfaces, self-written waveguides with microlens arrays, and antireflective nanostructures (ARS). Subsequently, compound eyes with focal length tunability, photosensitivity enhancers, and polarization imaging sensors are described.


Assuntos
Biomimética/instrumentação , Olho Artificial , Óptica e Fotônica , Animais , Desenho de Equipamento
2.
Micromachines (Basel) ; 10(10)2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652548

RESUMO

Tunable-focus liquid lenses provide focal length tuning for optical systems, e.g., cameras, where physical movement of rigid lenses are not an option or not preferable. In this work we present a magnetically actuated liquid lens utilizing the Lorentz force to vary the focal length as the current through the system is varied. The resulting lens can operate as both a diverging and a converging lens depending on the direction of current applied and has a large range of focal lengths, from -305 mm to -111 mm and from 272 mm to 146 mm. We also characterized the aberrations of the lens during the actuation with a Shack-Hartmann wavefront sensor, and utilized the lens for imaging, during which we measured a resolution of 7.13 lp/mm.

3.
Micromachines (Basel) ; 10(7)2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31373304

RESUMO

We have fabricated a fully-flexible, focus-tunable microlens array on a sheet and demonstrated its imaging capabilities. Each liquid lens of the array is individually tunable via electrowetting on dielectric (EWOD) actuation and is situated on a polydimethylsiloxane (PDMS) substrate, which allows the lens array to operate as a reconfigurable optical system. In particular, we observed a significant increase in the field of view (FOV) of the system to 40.4° by wrapping it on a cylindrical surface as compared to the FOV of 21.5° obtained by the array on a planer surface. We also characterized the liquid lenses of the system, observing a range of focus length from 20.2 mm to 9.2 mm as increased voltage was applied to each EWOD lens. A Shack-Hartmann wavefront sensor (SHWS) was used to measure the wavefront of the lens as it was actuated, and the aberrations of the lens were assessed by reporting the Zernike coefficients of the wavefronts.

4.
Micromachines (Basel) ; 8(11)2017 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-30400522

RESUMO

Electrowetting-on-dielectric (EWOD) is a fast, well-established actuation method for a variety of applications, from microfluidics to electrowetting displays to electrowetting lenses. We therefore seek to develop a robust, scalable fabrication method for the realization of EWOD on a flexible polydimethylsiloxane (PDMS) substrate in order to increase the range of possible applications. We fabricated a 5 × 5 array of individually controlled electrowetting cells to manipulate silicone oil droplets via EWOD. The fabrication process utilized exclusively flexible materials to improve the robustness of the overall device, and processing methods were adapted to accommodate the particular challenges posed by flexible materials. Simulation of the EWOD devices was conducted using ANSYS Fluent and showed the change in contact angle in response to voltage applied. Fabricated devices were also tested, with actuation of the oil droplet observed with up to 100 V (RMS) AC applied across underlying electrodes. We demonstrated fabrication of a fully flexible array and verified actuation to center droplets over the electrodes. This work may be expanded to address more specific flexible applications for EWOD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...