Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Parasitol ; 67(2): 858-866, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35294974

RESUMO

BACKGROUND: Leishmaniases are a vector-borne disease, re-emerging in several regions of the world posing a burden on public health. As other vector-borne diseases, climate change is a crucial factor affecting the evolution of leishmaniasis. In Morocco, anthroponotic cutaneous leishmaniasis (ACL) is widespread geographically as many foci across the country, mainly in central Morocco. The objective of this study is to evaluate the potential impacts of climate change on the distribution of ACL due to Leishmania tropica, and its corresponding vector Phlebotomus sergenti in Morocco. METHODS: Using Ecological Niche Modeling (ENM) tool, the estimated geographical range shift of L. tropica and P. sergenti by 2050 was projected under two Representative's Concentration's Pathways (RCPs) to be 2.6 and RCP 8.5 respectively. P. sergenti records were obtained from field collections of the laboratory team and previously published entomological observations, while, epidemiological data for L. tropica were obtained from Moroccan Ministry of Health reports. RESULTS: Our models under present-day conditions indicated a probable expansion for L. tropica as well as for its vector in Morocco, P. sergenti. It showed a concentrated distribution in the west-central and northern area of Morocco. Future predictions anticipate expansion into areas not identified as suitable for P. sergenti under present conditions, particularly in northern and southeastern areas of Morocco. L. tropica is also expected to have high expansion in southern areas for the next 30 years in Morocco. CONCLUSION: This indicates that L. tropica and P. sergenti will continue to find suitable climate conditions in the future. A higher abundance of P. sergenti may indeed result in a higher transmission risk of ACL. This information is essential in developing a control plan for ACL in Morocco. However, future investigations on L. tropica reservoirs are needed to confirm our predictions.


Assuntos
Leishmania tropica , Leishmaniose Cutânea , Phlebotomus , Psychodidae , Animais , Mudança Climática , Insetos Vetores , Leishmaniose Cutânea/epidemiologia , Marrocos/epidemiologia
2.
Transbound Emerg Dis ; 69(3): 1466-1478, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33876581

RESUMO

Rift Valley Fever (RVF) and West Nile virus (WNV) are two important emerging Arboviruses transmitted by Aedes and Culex mosquitoes, typically Ae. caspius, Ae. detritus and Cx. pipiens in temperate regions. In Morocco, several outbreaks of WNV (1996, 2003 and 2010), affecting horses mostly, have been reported in north-western regions resulting in the death of 55 horses and one person cumulatively. Serological evidence of WNV local circulation, performed one year after the latest outbreak, revealed WNV neutralizing bodies in 59 out of 499 tested participants (El Rhaffouli et al., 2012). The country also shares common borders with northern Mauritania, where RVF is often documented. Human movement, livestock trade, climate changes and the availability of susceptible mosquito vectors are expected to increase the spread of these diseases in the country. Thus, in this study, we gathered a data set summarizing occurrences of Ae. caspius, Ae. detritus and Cx. pipiens in the country, and generated model prediction for their potential distribution under both current and future (2050) climate conditions, as a proxy to identify regions at-risk of RVF and WNV probable expansion. We found that the north-western regions (where the population is most concentrated), specifically along the Atlantic coastline, are highly suitable for Ae. caspius, Ae. detritus and Cx. pipiens, under present-day conditions. Future model scenarios anticipated possible range changes for the three mosquitoes under all climatic assumptions. All of the studied species are prospected to gain new areas that are currently not suitable, even under the most optimist scenario, thus placing additional human populations at risk. Our maps and predictions offer an opportunity to strategically target surveillance and control programmes. Public health officials, entomological surveillance and control delegation must augment efforts and continuously monitor these areas to reduce and minimize human infection risk.


Assuntos
Aedes , Culex , Doenças dos Cavalos , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Cavalos , Humanos , Insetos Vetores , Marrocos/epidemiologia , Febre do Vale de Rift/epidemiologia , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária
3.
Transbound Emerg Dis ; 69(4): e1160-e1171, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34821477

RESUMO

Arboviruses (arthropod-borne viruses) are expanding their geographic range, posing significant health threats to millions of people worldwide. This expansion is associated with efficient and suitable vector availability. Apart from the well-known Aedes aegypti and Ae. albopictus, other Aedes species may potentially promote the geographic spread of arboviruses because these viruses have similar vector requirements. Aedes japonicus, Ae. vexans and Ae. vittatus are a growing concern, given their potential and known vector competence for several arboviruses including dengue, chikungunya, and Zika viruses. In the present study, we developed detailed maps of their global potential distributions under both current and future (2050) climate conditions, using an ecological niche modeling approach (Maxent). Under present-day conditions, Ae. japonicus and Ae. vexans have suitable areas in the northeastern United States, across Europe and in southeastern China, whereas the tropical regions of South America, Africa and Asia are more suitable for Ae. vittatus. Future scenarios anticipated range changes for the three species, with each expected to expand into new areas that are currently not suitable. By 2050, Ae. japonicus will have a broader potential distribution across much of Europe, the United States, western Russia and central Asia. Aedes vexans may be able to expand its range, especially in Libya, Egypt and southern Australia. For Ae. vittatus, future projections indicated areas at risk in sub-Saharan Africa and the Middle East. As such, these species deserve as much attention as Ae. aegypti and Ae. albopictus when processing arboviruses risk assessments and our findings may help to better understand the potential distribution of each species.


Assuntos
Aedes , Arbovírus , Infecção por Zika virus , Zika virus , Animais , Mudança Climática , Ecossistema , Humanos , Mosquitos Vetores , Infecção por Zika virus/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...