Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 366: 121751, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972191

RESUMO

Pyrolysis stands out as an effective method for the disposal of phytoremediation residues in abandoned mines, yielding a valuable by-product, biochar. However, the environmental application of biochar derived from such residues is limited by the potential environmental risks of heavy metals. Herein, Miscanthus sp. residues from abandoned mines were pyrolyzed into biochars at varied pyrolysis temperatures (300-700 °C) to facilitate the safe reuse of phytoremediation residues. The results showed that pyrolysis significantly stabilizes heavy metals in biomass, with Cd exhibiting the most notable stabilization effect. Acid-soluble/exchangeable and reducible fractions of Cd decreased significantly from 69.91 % to 2.52 %, and oxidizable and residue fractions increased approximately 3.24 times at 700 °C. The environmental risk assessment indicated that biochar pyrolyzed over 500 °C pose lower environmental risk (RI < 30), making them optimal for the safe utilization of phytoremediation residues. Additionally, adsorption experiments suggested that biochars prepared at higher temperature (500-700 °C) exhibit superior adsorption capacity, attributed to alkalinity and precipitation effect. This study highlights that biochars produced by pyrolyzing Miscanthus sp. from abandoned mines above 500 °C hold promise for environmental remediation, offering novel insight into the reutilization of metal-rich biomass.

2.
Biodegradation ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517619

RESUMO

Bioremediation is considered to be an effective treatment for hydrocarbon removal from polluted soils. However, the effectiveness of this treatment is often limited by the low availability of targeted contaminants. Biosurfactants produced by some microorganisms can increase organic compound solubility and might then overcome this limitation. Two different inocula producers of biosurfactants (Burkholderia thailandensis E264 and SHEMS1 microbial consortium isolated from a hydrocarbon-contaminated soil) were incubated in Bushnell-Haas medium supplemented with hydrocarbons to investigate their biodegradation potential. Experimental results showed their ability to degrade 9.1 and 6.1% of hydrocarbons respectively after 65 days of incubation with an initial total hydrocarbon concentration of 16 g L-1. The biodegradation was more effective for the light and medium fractions (C10 to C36). B. thailandensis and SHEMS1 consortium produced surfactants after 14 days of culture during the stationary phase with hydrocarbons as the sole carbon and energy source. However, biosurfactant production did not appear to directly increase hydrocarbon degradation efficiency. The complexity and recalcitrance of hydrocarbon mixture used in this study appeared to continue to limit its biodegradation even in the presence of biosurfactants. In conclusion, B. thailandensis and SHEMS1 consortium can degrade recalcitrant hydrocarbon compounds and are therefore good candidates for the bioremediation of environments polluted by total hydrocarbons.

3.
Environ Sci Pollut Res Int ; 29(39): 59736-59750, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35394632

RESUMO

Once previous industrial activity has ceased, brownfields are found in urban and suburban environments and managed in different ways ranging from being left untouched to total reconversion. These situations apply to large surface areas often impacted by residual diffuse pollution. Though significant and preventing any sensitive use, residual contamination does not necessarily require treatment. Moreover, conventional treatments show their technical and economic limits in these situations and gentle remediation options such as phytomanagement might appear more relevant to the management of those sites. Thus, these sites face up two major issues: managing moderate contamination levels and providing an alternative use of economic interest. This work proposes to assess a management strategy associating the phytoremediation of organic pollution along with the production of biomass for energy generation production. A 16-week controlled growth experiment was conducted on a soil substrate moderately impacted by multiple pollution (trace elements, mainly Zn and Pb, and hydrocarbons), by associating rhizodegradation with Medicago sativa or biomass production with Robinia pseudoacacia or Alnus incana in monocultures. The effect of a microbial inoculum amendment on the performances of these treatments was also evaluated. Results showed total hydrocarbons (TH), and to a lesser extent polycyclic aromatic hydrocarbons (PAH), concentrations decreased over time, whatever the plant cover. Good biomass production yields were achieved for both tree species in comparison with the control sample, even though R. pseudoacacia seemed to perform better. Furthermore, the quality of the biomass produced was in conformity with the thresholds set by the legislation concerning its use as a renewable energy source.


Assuntos
Poluentes do Solo , Biodegradação Ambiental , Biomassa , Hidrocarbonetos , Solo , Poluentes do Solo/análise
4.
Sci Total Environ ; 616-617: 658-668, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29100691

RESUMO

A new model that was able to simulate the behaviours of polycyclic aromatic hydrocarbons (PAH) during composting and after the addition of the composts to agricultural soil is presented here. This model associates modules that describe the physical, biological and biochemical processes involved in PAH dynamics in soils, along with a module describing the compost degradation resulting in PAH release. The model was calibrated from laboratory incubations using three 14C-PAHs, phenanthrene, fluoranthene and benzo(a)pyrene, and three different composts consisting of two mature and one non-mature composts. First, the labelled PAHs were added to the compost over 28days, and spiked composts were then added to the soil over 55days. The model calculates the proportion of biogenic and physically bound residues in the non-extractable compartment of PAHs at the end of the compost incubation to feed the initial conditions of the model for soil amended with composts. For most of the treatments, a single parameter set enabled to simulate the observed dynamics of PAHs adequately for all the amended soil treatments using a Bayesian approach. However, for fluoranthene, different parameters that were able to simulate the growth of a specific microbial biomass had to be considered for mature compost. Processes that occurred before the compost application to the soil strongly influenced the fate of PAHs in the soil. Our results showed that the PAH dissipation during compost incubation was higher in mature composts because of the higher specific microbial activity, while the PAH dissipation in amended soil was higher in the non-mature compost because of the higher availability of PAHs and the higher co-metabolic microbial activity.

5.
Sci Total Environ ; 619-620: 239-248, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29149748

RESUMO

Management and remediation actions of polycyclic aromatic hydrocarbons (PAH) contaminated sites require an accurate knowledge of the dynamics of these chemicals in situ under real conditions. Here we developed, under the Virtual Soil Platform, a global model for PAH that describes the principal physical and biological processes controlling the dynamics of PAH in soil under real climatic conditions. The model was applied first to simulate the observed dynamics of phenanthrene in situ field experimental plots of industrial contaminated soil. In a second step, different long-term scenarios of climate change or bioavailability increase were applied. Our results show that the model can adequately predict the fate of phenanthrene and can contribute to clarify some of unexplored aspects regarding the behavior of phenanthrene in soil like its degradation mechanism and stabilization. Tested prospective scenarios showed that bioavailability increase (through the addition of solvent or surfactants) resulted in significant increase in substrate transfer rate, hence reducing remediation time. Regarding climate change effect, the model indicated that phenanthrene concentration decreased by 54% during 40years with a natural attenuation and both scenarios chosen for climatic boundaries provided very similar results.

6.
Environ Sci Pollut Res Int ; 24(24): 19653-19661, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28681304

RESUMO

Co-phytoremediation of both trace elements and polycyclic aromatic hydrocarbons (PAH) is an emerging technique to treat multi-contaminated soils. In this study, root morphological and structural features of the heavy metal hyperaccumulator Noccaea caerulescens, exposed to a model PAH phenanthrene (PHE) in combination with cadmium (Cd), were observed. In vitro cultivated seedlings were exposed to 2 mM of PHE and/or 5 µM of Cd for 1 week. Co-phytoremediation effectiveness appeared restricted because of a serious inhibition (about 40%) of root and shoot biomass production in presence of PHE, while Cd had no significant adverse effect on these parameters. The most striking effects of PHE on roots were a decreased average root diameter, the inhibition of cell and root hair elongation and the promotion of lateral root formation. Moreover, endodermal cells with suberin lamellae appeared closer to the root apex when exposed to PHE compared to control and Cd treatments, possibly due to modified lateral root formation. The stage with well-developed suberin lamellae was not influenced by PHE whereas peri-endodermal layer development was impaired in PHE-treated plants. Many of these symptoms were similar to a water-deficit response. These morphological and structural root modifications in response to PHE exposition might in turn limit Cd phytoextraction by N. caerulescens in co-contaminated soils.


Assuntos
Brassicaceae/efeitos dos fármacos , Cádmio/análise , Fenantrenos/análise , Raízes de Plantas/efeitos dos fármacos , Poluentes do Solo/análise , Biodegradação Ambiental , Biomassa , Brassicaceae/crescimento & desenvolvimento , Cádmio/toxicidade , França , Fenantrenos/toxicidade , Raízes de Plantas/crescimento & desenvolvimento , Poluentes do Solo/toxicidade
7.
Environ Pollut ; 215: 27-37, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27176762

RESUMO

A novel kinetics model that describes the dynamics of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils is presented. The model includes two typical biodegradation pathways: the co-metabolic pathway using pseudo first order kinetics and the specific biodegradation pathway modeled using Monod kinetics. The sorption of PAHs to the solid soil occurs through bi-phasic fist order kinetics, and two types of non-extractible bounded residues are considered: the biogenic and the physically sequestrated into soil matrix. The PAH model was developed in Matlab, parameterized and tested successfully on batch experimental data using a Bayesian approach (DREAM). Preliminary results led to significant model simplifications. They also highlighted that the specific biodegradation pathway was the most efficient at explaining experimental data, as would be expected for an old industrial contaminated soil. Global analysis of sensitivity showed that the amount of PAHs ultimately degraded was mostly governed by physicochemical interactions rather than by biological activity.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/química , Poluentes do Solo/química , Teorema de Bayes , Biodegradação Ambiental , Solo/química
8.
Chemosphere ; 149: 130-6, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26855216

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) have a toxic effect on plants, which limits the efficiency of phytomanagement of contaminated soils. The mechanisms underlying their toxicity are not fully understood. A cultivation experiment was carried out with maize, used as model plant, exposed to sand spiked with phenanthrene (50 or 150 mg kg(-1) dw). Epi-fluorescence microscopic observation of root sections was used to assess suberization of exodermis and endodermis and phenanthrene localization along the primary root length. For 10 days of cultivation, exodermis and endodermis suberization of exposed maize was more extensive. However, after 20 days of exposure, exodermis and endodermis of non-exposed roots were totally suberized, whilst PHE-exposed roots where less suberized. Early extensive suberization may act as barrier against PHE penetration, however longer exposure inhibits root maturation. Phenanthrene patches were located only near suberized exodermis and endodermis, which may therefore act as retention zones, where the hydrophobic phenanthrene accumulates during its radial transport.


Assuntos
Monitoramento Ambiental , Fenantrenos/toxicidade , Raízes de Plantas/metabolismo , Zea mays/metabolismo , Lipídeos , Fenantrenos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Zea mays/efeitos dos fármacos
9.
Environ Sci Pollut Res Int ; 22(18): 13724-38, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25616383

RESUMO

The high organic pollutant concentration of aged polycyclic aromatic hydrocarbon (PAH)-contaminated wasteland soils is highly recalcitrant to biodegradation due to its very low bioavailability. In such soils, the microbial community is well adapted to the pollution, but the microbial activity is limited by nutrient availability. Management strategies could be applied to modify the soil microbial functioning as well as the PAH contamination through various amendment types. The impact of amendment with clay minerals (montmorillonite), wood sawdust and organic matter plant roots on microbial community structure was investigated on two aged PAH-contaminated soils both in laboratory and 1-year on-site pot experiments. Total PAH content (sum of 16 PAHs of the US-EPA list) and polar polycyclic aromatic compounds (pPAC) were monitored as well as the available PAH fraction using the Tenax method. The bacterial and fungal community structures were monitored using fingerprinting thermal gradient gel electrophoresis (TTGE) method. The abundance of bacteria (16S rRNA genes), fungi (18S rRNA genes) and PAH degraders (PAH-ring hydroxylating dioxygenase and catechol dioxygenase genes) was followed through qPCR assays. Although the treatments did not modify the total and available PAH content, the microbial community density, structure and the PAH degradation potential changed when fresh organic matter was provided as sawdust and under rhizosphere influence, while the clay mineral only increased the percentage of catechol-1,2-dioxygenase genes. The abundance of bacteria and fungi and the percentage of fungi relative to bacteria were enhanced in soil samples supplemented with wood sawdust and in the plant rhizospheric soils. Two distinct fungal populations developed in the two soils supplemented with sawdust, i.e. fungi related to Chaetomium and Neurospora genera and Brachyconidiellopsis and Pseudallescheria genera, in H and NM soils respectively. Wood sawdust amendment favoured the development of PAH-degrading bacteria holding Gram-negative PAH-ring hydroxylating dioxygenase, catechol-1,2-dioxygenase and catechol-2,3-dioxygenase genes. Regarding the total community structure, bacteria closely related to Thiobacillus (ß-Proteobacteria) and Steroidobacter (γ-Proteobacteria) genera were favoured by wood sawdust amendment. In both soils, plant rhizospheres induced the development of fungi belonging to Ascomycota and related to Alternaria and Fusarium genera. Bacteria closely related to Luteolibacter (Verrucomicrobia) and Microbacterium (Actinobacteria) were favoured in alfalfa and ryegrass rhizosphere.


Assuntos
Silicatos de Alumínio/farmacologia , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Madeira/química , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biodegradação Ambiental/efeitos dos fármacos , Argila , Fungos/genética , Fungos/isolamento & purificação , Fungos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , RNA Ribossômico 16S/genética , Rizosfera , Poluentes do Solo/isolamento & purificação
10.
Chemosphere ; 124: 110-5, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25496734

RESUMO

Phytoremediation is promising, but depends on clearly understanding contaminants' impact on plant functioning. We therefore focused on the impact of polycyclic aromatic hydrocarbons (PAH) on cultivated plants and understanding the impact of phenanthrene (PHE) on maize functioning (Zea mays). Cultivation was conducted under controlled conditions on artificially contaminated sand with PHE levels increasing from 50 to 750 mg PHE kg(-1). After four weeks, plants exposed to levels above 50 mg PHE kg(-1) presented decreased biomasses and reduced photosynthetic activity. These modifications were associated with higher biomass allocations to roots and lower ones to stems. The leaf biomass proportion was similar, with thinner blades than controls. PHE-exposed plant showed modified root architecture, with fewer roots of 0.2 and 0.4 mm in diameter. Leaves were potassium-deplete, but calcium, phosphorus, magnesium and zinc-enriched. Their content in nitrogen, iron, sulfur and manganese was unaffected. These responses resembled those of water-stress, although water contents in plant organs were not affected by PHE and water supply was not limited. They also indicated a possible perturbation of both nutritional functioning and photosynthesis.


Assuntos
Fenantrenos/toxicidade , Poluentes do Solo/toxicidade , Zea mays/efeitos dos fármacos , Biodegradação Ambiental , Relação Dose-Resposta a Droga , Organogênese Vegetal/efeitos dos fármacos , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Dióxido de Silício/análise , Zea mays/anatomia & histologia , Zea mays/fisiologia
11.
Sci Total Environ ; 497-498: 345-352, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25137382

RESUMO

The impacts of fresh organic matter (OM) incorporation in an industrial PAH-contaminated soil on its structure and contaminant concentrations (available and total) were monitored. A control soil and a soil amended with the equivalent of 10 years maize residue input were incubated in laboratory-controlled conditions over 15 months. The structure of the amended soil showed an aggregation process trend which is attributable to (i) the enhanced microbial activity resulting from fresh OM input itself and (ii) the fresh OM and its degradation products. Initially the added organic matter was evenly distributed among all granulodensimetric fractions, and then rapidly degraded in the sand fraction, while stabilizing and accumulating in the silts. PAH degradation remained slight, despite the enhanced microbial biomass activity, which was similar to kinetics of the turnover rate of OM in an uncontaminated soil. The silts stabilized the anthropogenic OM and associated PAH. The addition of fresh OM tended to contribute to this stabilization process. Thus, in a context of plant growth on this soil two opposing processes might occur: rhizodegradation of the available contaminant and enhanced stabilization of the less available fraction due to carbon input.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/química , Poluentes do Solo/química , Solo/química , Indústrias , Modelos Químicos
12.
Sci Total Environ ; 470-471: 639-45, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24176712

RESUMO

Persistent organic pollutants (POPs), such as polycyclic aromatic hydrocarbons (PAHs), may be found in high concentrations in soils of former industrial sites including manufactured gas plants or coking plants. Techniques using moderate solvent extraction, biological tests or solid phase extraction have proved useful for pollution availability estimation. However, more accurate and reliable measurement tools specifically adapted to low concentrations are still needed. Based on a solid-liquid extraction using a Tenax® resin, we suggest a protocol to assess the bioavailability of PAHs, dedicated to aged industrial wasteland soils. Desorption kinetics were measured on three representative contaminated industrial soils. Results were modeled using a first order two-compartment model that provided an estimate of the rapidly desorbing fraction, which was considered to be available, over a 30 h extraction period. In conclusion, this method, allowing the measurement of the available fraction, might prove more relevant than the total concentration value when assessing soil contamination related risks. It may also predict achievable bioremediation performances.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Solo/química , Adsorção , Biodegradação Ambiental , Cinética
13.
Environ Pollut ; 179: 81-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23665618

RESUMO

An original combined organic geochemistry and soil science approach was used to elucidate PAH availability controlling factors in a multi-contaminated industrial soil. Water granulodensimetric fractionation was applied to obtain five water-stable material fractions. These were characterized by elemental, molecular and mineral analysis, and microscopic observations. Among the different fractions, fine silts distinguished themselves by higher carbon and nitrogen contents, lower C/N ratio, an enrichment in total PAH and especially high molecular weight compounds, a coal tar signature and the lowest PAH availability. This fine silt fraction seemed to play a protective role for PAH that might be explained by its size and/or its specific reactivity. The mineral phases present in this fraction were proposed to explain the protection of organic matter. This led to a specific molecular signature of OM, having higher sorption properties both processes (sorption and mineral-bound protection) resulting in a lower PAH availability.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Solo/química , Adsorção , Recuperação e Remediação Ambiental , Indústrias , Modelos Químicos , Tamanho da Partícula , Hidrocarbonetos Policíclicos Aromáticos/química , Poluentes do Solo/química
14.
Environ Pollut ; 177: 98-105, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23500046

RESUMO

Although high PAH content and detection of PAH-degraders, the PAH biodegradation is limited in aged-contaminated soils due to low PAH availability (i.e., 1%). Here, we tried to experimentally increase the soil PAH availability by keeping both soil properties and contamination composition. Organic extract was first removed and then re-incorporated in the raw soil as fresh contaminants. Though drastic, this procedure only allowed a 6-time increase in the PAH availability suggesting that the organic constituents more than ageing were responsible for low availability. In the re-contaminated soil, the mineralization rate was twice more important, the proportion of 5-6 cycles PAH was higher indicating a preferential degradation of lower molecular weight PAH. The extraction treatment induced bacterial and fungal community structures modifications, Pseudomonas and Fusarium solani species were favoured, and the relative quantity of fungi increased. In re-contaminated soil the percentage of PAH-dioxygenase gene increased, with 10 times more Gram negative representatives.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Microbiologia do Solo , Poluentes do Solo/toxicidade , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Biodegradação Ambiental/efeitos dos fármacos , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo/química , Poluentes do Solo/análise
15.
Biodegradation ; 24(4): 539-48, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23325502

RESUMO

Natural attenuation processes valorization for PAH-contaminated soil remediation has gained increasing interest from site owners. A misunderstanding of this method and a small amount of data available does not encourage its development. However, monitored natural attenuation (MNA) offers a valuable, cheaper and environmentally friendly alternative to more classical options such as physico-chemical treatments (e.g., chemical oxidation, thermal desorption). The present work proposes the results obtained during a long-term natural attenuation assessment of historically contaminated industrial soils under real climatic conditions. This study was performed after a 10 year natural attenuation period on 60 off-ground lysimeters filled with contaminated soils from different former industrial sites (coking industry, manufactured gas plants) whose initial concentration of PAH varied between 380 and 2,077 mg kg(-1). The analysed parameters included leached water characterization, soil PAH concentrations, evaluation of vegetation cover quality and quantity. Results showed a good efficiency of the PAH dissipation and limited transfer of contaminants to the environment. It also highlighted the importance of the fine soil fractions in controlling PAH reactivity. PAH dissipation through water leaching was limited and did not present a significant risk for the environment. This PAH water concentration appeared however as a good indicator of overall dissipation rate, thereby illustrating the importance of pollutant availability in predicting its degradation potential.


Assuntos
Plantas/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Monitoramento Ambiental , Água Subterrânea/análise , Plantas/química , Solo/química , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
16.
Chemosphere ; 91(3): 269-74, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23245576

RESUMO

Phytoremediation, given the right choice of plant, may be theoretically applicable to multi-contamination. Laboratory and some field trials have proven successful, but this ideal technique is in all cases dependent on plant growth ability on (generally) low-fertility soil or media. While contaminant concentration has often been proposed as an explanation for plant growth limitation, other factors, commonly occurring in industrial soils, such as salinity, should be considered. The present work highlights the fact that besides contaminants (trace elements and PAH), soil salinity may strongly affect germination and growth of the hyperaccumulator Noccaea caerulescens. Elevated concentrations of nitrate proved highly toxic for seed germination. At the growth stage the salt effect (sulfate) seemed less significant and the limited biomass production observed could be attributed mostly to organic contamination.


Assuntos
Salinidade , Poluentes do Solo/análise , Solo/química , Biodegradação Ambiental , Germinação/efeitos dos fármacos , Plantas/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...