Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 46(14): 3687-3693, 2021 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-34402293

RESUMO

A LC-MS/MS method was developed for the rapid and simultaneous determination of genipin-1-ß-D-gentiobioside,geniposide,naringin,hesperidin and neohesperidin in SD rat plasma.The linear relationships of these five constituents in rats were validated,and the specificity,accuracy,precision and stability met the requirements.Their pharmacokinetic parameters were calculated by DAS 3.2.2,and the results showed that the metabolic process in vivo of the five constituents accorded with the characteristics of noncompartmental model.Their main pharmacokinetic parameters were listed as follows:(1) genipin-1-ß-D-gentiobioside:t_(1/2)(3.20±0.51)h,C_(max)(403.15±96.93)µg·L~(-1)and AUC_(0-t)(612.56±148.50)µg·L~(-1)·h for the model group,while t_(1/2)(3.07±0.75) h,C_(max)(229.50±60.63)µg·L~(-1)and AUC_(0-t)(413.14±76.37)µg·L~(-1)·h for the normal group;(2) geniposide:t_(1/2)(3.24±0.68) h,C_(max)(2 961.40±688.02)µg·L~(-1),and AUC_(0-t)(10 972.87±1 992.96)µg·L~(-1)·h for the model group,while t_(1/2)(4.56±0.96) h,C_(max)(1 833.27±558.13)µg·L~(-1),and AUC_(0-t)(8 996.27±3 053.48)µg·L~(-1)·h for the normal group;(3) naringin:t_(1/2)(1.64±0.59) h,C_(max)(415.13±259.54)µg·L~(-1),and AUC_(0-t)(608.62±289.05)µg·L~(-1)·h for the model group,while t_(1/2)(1.02±0.25) h,C_(max)(355.08±180.00)µg·L~(-1),and AUC_(0-t)(501.07±242.68)µg·L~(-1)·h for the normal group;(4) hesperidin:t_(1/2)(0.86±0.29) h,C_(max)(95.17±22.80)µg·L~(-1)and AUC_(0-t)(141.19±54.63)µg·L~(-1)·h for the model group,while t_(1/2)(0.95±0.31) h,C_(max)(46.48±18.33)µg·L~(-1)and AUC_(0-t)(69.51±14.73)µg·L~(-1)·h for the normal group;(5) neohesperidin:t_(1/2)(0.89±0.29) h,C_(max)(828.78±361.56)µg·L~(-1)and AUC_(0-t)(1 292.29±553.73)µg·L~(-1)·h for the model group,while t_(1/2)(0.90±0.31) h,C_(max)(314.68±172.45)µg·L~(-1)and AUC_(0-t)(385.99±138.55)µg·L~(-1)·h for the normal group.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Ratos , Ratos Sprague-Dawley
2.
Chin J Nat Med ; 15(10): 775-784, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29103463

RESUMO

Ginkgo diterpene lactones meglumine injection (GDLI) is a commercially available product used for neuroprotection. However, the pharmacokinetic properties of the prototypes and hydrolyzed carboxylic forms of the primary components in GDLI, i.e., ginkgolide A (GA), ginkgolide B (GB), and ginkgolide K (GK), have never been fully evaluated in beagle dogs. In this work, a simple, sensitive, and reliable method based on ultra-fast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) was developed, and the prototypes and total amounts of GA, GB, and GK were determined in beagle dog plasma. The plasma concentrations of the hydrolyzed carboxylic forms were calculated by subtracting the prototype concentrations from the total lactone concentrations. For the first time, the pharmacokinetics of GA, GB, and GK were fully assessed in three forms, i.e., the prototypes, the hydrolyzed carboxylic forms, and the total amounts, after intravenous administration of GDLI in beagle dogs. It was shown that ginkgolides primarily existed in the hydrolyzed form in plasma, and the ratio of hydrolysates to prototype forms of GA and GB decreased gradually to a homeostatic ratio. All of the three forms of the three ginkgolides showed linear exposure of AUC to the dosages. GA, GB, and GK showed a constant half-life approximately 2.7, 3.4, and 1.2 h, respectively, which were consistent for the forms at three dose levels (0.3, 1.0, and 3.0 mg·kg-1) and after a consecutive injection of GDLI for 7 days (1.0 mg·kg-1).


Assuntos
Ginkgo biloba/química , Ginkgolídeos/farmacocinética , Lactonas/farmacocinética , Extratos Vegetais/farmacocinética , Animais , Cães , Ginkgolídeos/administração & dosagem , Lactonas/administração & dosagem , Extratos Vegetais/administração & dosagem , Espectrometria de Massas em Tandem
3.
J Pharm Biomed Anal ; 142: 190-200, 2017 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-28514718

RESUMO

Cerebral ischemia-reperfusion (I/R) injury usually contributes to mortality and disability after ischemic stroke. Ginkgolides injection (GIn), a standard preparation composed of ginkgo diterpene lactones extract, is clinically used for neuroprotective treatment on reconvalescents of cerebral infarction. However, the understanding about its therapeutic mechanism is still lacking. In this study, a gas chromatography-mass spectrometry (GC-MS) based metabolomic approach coupled with multivariate data analysis (MVDA) was applied to explore the neuroprotective effects of GIn in a rodent model of focal ischemic stroke induced by transient middle cerebral artery occlusion (tMCAO). Metabolomic profiling revealed a series of metabolic perturbations that underlie the cerebral I/R pathological events. GIn can reverse the I/R induced brain metabolic deviations by modulating multiple metabolic pathways, such as glycolysis, Krebs cycle, pentose phosphate pathway (PPP), γ-aminobutyrate (GABA) shunt and lipid metabolism. Moreover, the main bioactive components of GIn were distributed to brain tissue much more easily in tMCAO rats than in normal rats after an intravenous administration, suggesting that the increased cerebral exposure to ginkgolides in I/R pathological condition potentially facilitated the neuroprotective effects of GIn by directly targeting at brain. The present study provided valuable information for our understanding about metabolic changes of cerebral I/R injury and clinical application of GIn.


Assuntos
Isquemia Encefálica , Animais , Cromatografia Gasosa-Espectrometria de Massas , Ginkgolídeos , Infarto da Artéria Cerebral Média , Fármacos Neuroprotetores , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...