Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Anal Chim Acta ; 1316: 342860, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969429

RESUMO

BACKGROUND: Glutathione (GSH), a highly abundant thiol compound within cells, plays a critical role in physiological processes and exhibits close correlation with cancer. Among molecular imaging technologies, most probes have relatively short emission wavelengths and lack photoacoustic imaging (PA) capability, resulting in the inability to obtain tissue images with high penetration depth. The presence of GSH in the tumor microenvironment neutralizes ROS, diminishing the therapeutic effect of PDT, thus resulting in often unsatisfactory therapeutic efficacy. Therefore, it is imperative to develop a dual-modal probe for the detection of GSH and the diagnosis and treatment of cancer. RESULTS: In this study, we synthesized a novel dual-modal probe, Cy-Bio-GSH, utilizing near-infrared fluorescence (NIRF) and photoacoustic (PA) imaging techniques for GSH detection. The probe integrates cyanine dye as the fluorophore, nitroazobenzene as the recognition moiety, and biotin as the tumor-targeting moiety. Upon reacting with GSH, the probe emits NIR fluorescence at 820 nm and generates a PA signal. Significantly, this reaction activates the photodynamic and photothermal properties of the probe. By depleting GSH and employing a synergistic photothermal therapy (PTT) treatment, the therapeutic efficacy of photodynamic therapy (PDT) is remarkably enhanced. In-vivo experiments confirm the capability of the probe to detect GSH via NIRF and PA imaging. Notably, the combined tumor-targeting ability and PDT/PTT synergistic therapy enhance therapeutic outcomes for tumors and facilitate their ablation. SIGNIFICANCE: A novel tumor-targeting and dual-modal imaging probe (Cy-Bio-GSH) is synthesized, exhibiting remarkable sensitivity and selectivity to GSH, enabling the visualization of GSH in cells and the differentiation between normal and cancer cells. Cy-Bio-GSH enhances PDT/PTT with effective killing of cancer cells and makes the ablation of tumors in mice. This work represents the first tumor-targeting probe for GSH detection, and provides crucial tool for cancer diagnosis and treatment by dual-modal imaging with improved PDT/PTT synergistic therapy.


Assuntos
Biotina , Glutationa , Técnicas Fotoacústicas , Fotoquimioterapia , Glutationa/química , Glutationa/metabolismo , Animais , Humanos , Camundongos , Biotina/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Imagem Óptica , Feminino , Terapia Fototérmica , Camundongos Nus , Camundongos Endogâmicos BALB C , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/uso terapêutico
2.
Chem Commun (Camb) ; 60(52): 6675-6678, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38860824

RESUMO

A near-infrared fluorescent probe (TX-P) for detecting peroxynitrite is constructed. The probe has a near-infrared emission (725 nm), large Stokes shift (125 nm) and excellent sensitivity and selectivity. In addition, TX-P can be used to visualize ONOO- in living cells, image ONOO- in paw edema mice and evaluate anti-inflammatory drugs.


Assuntos
Edema , Corantes Fluorescentes , Ácido Peroxinitroso , Animais , Ácido Peroxinitroso/metabolismo , Ácido Peroxinitroso/análise , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Camundongos , Edema/diagnóstico por imagem , Edema/tratamento farmacológico , Edema/induzido quimicamente , Raios Infravermelhos , Humanos , Imagem Óptica , Células RAW 264.7 , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/uso terapêutico
3.
Diagnostics (Basel) ; 14(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38786343

RESUMO

Circulating cfRNA in plasma has emerged as a fascinating area of research with potential applications in disease diagnosis, monitoring, and personalized medicine. Circulating RNA sequencing technology allows for the non-invasive collection of important information about the expression of target genes, eliminating the need for biopsies. This comprehensive review aims to provide a detailed overview of the current knowledge and advancements in the study of plasma cfRNA, focusing on its diverse landscape and biological functions, detection methods, its diagnostic and prognostic potential in various diseases, challenges, and future perspectives.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38593207

RESUMO

Wounds infected with bacteria, if left untreated, have the potential to escalate into life-threatening conditions, such as sepsis, which is characterized by widespread inflammation and organ damage. A comprehensive approach to treating bacterial-infected wounds, encompassing the control of bacterial infection, biofilm eradication, and inflammation regulation, holds significant importance. Herein, a microneedle (MN) patch (FM@ST MN) has been developed, with silk fibroin (SF) and tannic acid-based hydrogel serving as the matrix. Encapsulated within the MNs are the AIEgen-based activatable probe (FQ-H2O2) and the NLRP3 inhibitor MCC950, serving as the optical reporter/antibacterial agent and the inflammation regulator, respectively. When applied onto bacterial-infected wounds, the MNs in FM@ST MN penetrate bacterial biofilms and gradually degrade, releasing FQ-H2O2 and MCC950. The released FQ-H2O2 responds to endogenously overexpressed reactive oxygen species (H2O2) at the wound site, generating a chromophore FQ-OH which emits noticeable NIR-II fluorescence and optoacoustic signals, enabling real-time imaging for outcome monitoring; and this chromophore also exhibits potent antibacterial capability due to its dual positive charges and shows negligible antibacterial resistance. However, the NLRP3 inhibitor MCC950, upon release, suppresses the activation of NLRP3 inflammasomes, thereby mitigating the inflammation triggered by bacterial infections and facilitating wound healing. Furthermore, SF in FM@ST MN aids in tissue repair and regeneration by promoting the proliferation of epidermal cells and fibroblasts and collagen synthesis. This MN system, free from antibiotics, holds promise as a solution for treating and monitoring bacterially infected wounds without the associated risk of antimicrobial resistance.

5.
Adv Healthc Mater ; 13(12): e2303997, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38281086

RESUMO

Sudden hemorrhage stemming from internal organ wounds poses a grave and potentially fatal risk if left untreated. Injectable-hydrogel-based tissue sealants featuring multiple actions, including fit-to-shape in situ gelation, rapid hemostasis, pro-angiogenic, anti-bacterial and outcome tracking, are ideal for the management of organ trauma wounds. Herein, an injectable-hydrogel tissue sealant AN@CD-PEG&TQ which consists of four-arm 4-arm poly(ethylene glycol) (PEG-SC) succinimidyl carbonate), AN@CD nanoprobe, and two bioactive peptides (anti-microbial peptide Tet213 and pro-angiogenic peptide QK) is developed. Among them, AN@CD nanoparticles form through host/guest complexation of amino-group-containing ß-cyclodextrin and adamantyl group, enabling in situ biomarker (NO)-activatable optoacoustic/NIR-II: Near-infrared second biological window fluorescent imaging. The ample ─NH2 groups on the surface of AN@CD readily engage in rapid cross-linking with succinimidyl ester groups located at the ends of four-arm PEG-SC. This cross-linking expedites the gelation process without necessitating additional initiators or cross-linking agents; thus, significantly enhancing both hydrogel's application convenience and biocompatibility. Bioactive peptides (Tet213 and QK) safeguard against possible bacterial infections, facilitate angiogenesis, and eventually, improve organ wounds healing. This hydrogel-based tissue sealant demonstrates superior therapeutic and bioimaging performance in various mouse models including liver hemorrhage, gastric perforation, and bacterial-infected skin wound mouse models, highlighting its potential as a high-performance wound sealant for organ bleeding wound management.


Assuntos
Hidrogéis , Imagem Óptica , Polietilenoglicóis , Animais , Camundongos , Hidrogéis/química , Hidrogéis/farmacologia , Polietilenoglicóis/química , Imagem Óptica/métodos , Hemostasia/efeitos dos fármacos , Hemorragia , Antibacterianos/química , Antibacterianos/farmacologia , Adesivos Teciduais/química , Adesivos Teciduais/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Nanopartículas/química , Masculino , Angiogênese
6.
Eur J Haematol ; 112(5): 692-700, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38154920

RESUMO

BACKGROUND: Non-anemic thalassemia trait (TT) accounted for a high proportion of TT cases in South China. OBJECTIVE: To use artificial intelligence (AI) analysis of erythrocyte morphology and machine learning (ML) to identify TT gene carriers in a non-anemic population. METHODS: Digital morphological data from 76 TT gene carriers and 97 controls were collected. The AI technology-based Mindray MC-100i was used to quantitatively analyze the percentage of abnormal erythrocytes. Further, ML was used to construct a prediction model. RESULTS: Non-anemic TT carriers accounted for over 60% of the TT cases. Random Forest was selected as the prediction model and named TT@Normal. The TT@Normal algorithm showed outstanding performance in the training, validation, and external validation sets and could efficiently identify TT carriers in the non-anemic population. The top three weights in the TT@Normal model were the target cells, microcytes, and teardrop cells. Elevated percentages of abnormal erythrocytes should raise a strong suspicion of being a TT gene carrier. TT@Normal could be promoted and used as a visualization and sharing tool. It is accessible through a URL link and can be used by medical staff online to predict the possibility of TT gene carriage in a non-anemic population. CONCLUSIONS: The ML-based model TT@Normal could efficiently identify TT carriers in non-anemic people. Elevated percentages of target cells, microcytes, and teardrop cells should raise a strong suspicion of being a TT gene carrier.


Assuntos
Talassemia , Talassemia beta , Humanos , Inteligência Artificial , Talassemia/diagnóstico , Talassemia/genética , Talassemia beta/diagnóstico , Talassemia beta/genética , Aprendizado de Máquina , Eritrócitos Anormais
7.
Front Immunol ; 14: 1280759, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38045698

RESUMO

Objective: This paper observes the efficacy of chemotherapy combined with CD19 and CD20 monoclonal antibodies in clearing minimal residual disease (MRD) and bridging transplantation for refractory acute B-lymphoblastic leukemia (B-ALL) in children and reviews the literature. Methods: A 4-year-old boy diagnosed with B-ALL in our hospital was treated with the SCCLG-ALL-2016 protocol. MRD and gene quantification decreased after induction but remained persistently positive, with poor efficacy. After this patient received three cycles of consolidation chemotherapy combined with blinatumomab and rituximab, MRD and fusion gene quantification became negative, and he received allogeneic hematopoietic stem cell transplantation (allo-HSCT). Results: During the use of monoclonal antibodies, neurotoxicity, CRS, or other side effects did not occur. Before transplantation, MRD became negative, and the bone marrow had been in complete remission since transplantation (13 months). Conclusion: Chemotherapy combined with blinatumomab for refractory B-ALL in children can bring a better remission rate for patients and is a means of bridging transplantation. Nevertheless, sequential CD20 monoclonal antibody therapy is the first report , and no adverse effects were observed in our case. It is well tolerated and can be used as one of the treatments for refractory B-ALL.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Pré-Escolar , Humanos , Masculino , Anticorpos Monoclonais/uso terapêutico , Medula Óssea , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia
8.
Neuroendocrinology ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38061350

RESUMO

INTRODUCTION: To investigate the role of circulating regulatory T cells (Tregs) as a novel marker associated with liver metastases and treatment response to transarterial embolization (TAE) in patients with gastroenteropancreatic neuroendocrine tumors (GEP-NETs). METHODS: Circulating Tregs, defined as the CD4+CD25+CD127low/- population, were examined by flow cytometry in peripheral blood mononuclear cells (PBMCs) from patients with GEP-NETs. Clinicopathological parameters, radiologic response, and hepatic progression-free survival (hPFS) data were collected. RESULTS: The association between circulating Tregs and clinicopathological parameters was analyzed in 139 GEP-NET patients. Higher Treg levels were significantly associated with more progressive clinical features, including a higher WHO grade, more advanced TNM stage, and the presence of liver metastases. A Treg level ≥ 8.015% distinguished between patients with and without liver metastases. Among a cohort of 51 GEP-NET patients who were subjected to TAE for reducing liver metastasis burden, patients with higher Treg levels depicted unfavorable responses and significantly reduced hPFS after TAE treatment. We also revealed that patients with Treghigh (≥8.975%) displayed significantly shorter median hPFS than patients with Treglow (< 8.975%). Additionally, after adjusting for other confounding clinical parameters, the association between Tregs and treatment response as well as hPFS remained significant, suggesting that Tregs may have a strong and independent prognostic impact in GEP-NETs. CONCLUSIONS: Our data suggest that circulating Tregs are a novel immunological marker associated with liver metastases and treatment response to TAE in patients with GEP-NETs.

9.
Am J Obstet Gynecol ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37914060

RESUMO

BACKGROUND: Previous studies have suggested that trophoblast cells inhibit the proliferation of peripheral natural killer cells and that the level of peripheral natural killer cells decrease in the middle and late pregnancy stage among healthy women. The change in peripheral natural killer cell level during early pregnancy and the relationship between the change in peripheral natural killer cell level and pregnancy outcomes among women with unexplained recurrent pregnancy loss have not been sufficiently explored. OBJECTIVE: This study aimed to characterize the level of prepregnancy peripheral natural killer cells in comparison with those in early pregnancy among women with unexplained recurrent pregnancy loss and to determine if the change in the level of peripheral natural killer cells from prepregnancy to early pregnancy can predict pregnancy outcomes. STUDY DESIGN: In this prospective cohort study, 1758 women with recurrent pregnancy loss were recruited between January 2017 and December 2021 among whom 252 women with unexplained recurrent pregnancy loss had prepregnancy and early pregnancy (4-6 weeks gestation) peripheral natural killer cell measurements. These 252 women were divided into 2 groups, namely those with a lower gestational peripheral natural killer cell level (group 1) when compared with prepregnancy levels and those who did not (group 2). The respective outcomes of these groups in terms of live birth and pregnancy loss were comparatively analyzed using chi-square and Student's t tests. Candidate factors that could influence live birth were selected using the Akaike information criterion. The participates were then randomly divided into training and testing groups. A multivariable logistic regression analysis was performed and a nomogram was created to assess the possibility of live birth. The predictive accuracy was determined by the area under the receiver operating characteristic curve and validated by plotting the predicted probabilities and the observed probabilities. A Hosmer-Lemeshow test was used to assess the goodness of fit. RESULTS: When early gestational peripheral natural killer cell levels were compared with prepregnancy peripheral natural killer cell levels, 61.5% (154) of women had a comparatively lower early-gestational peripheral natural killer cell level and 38.9% (98) of women had an increase or no change in the peripheral natural killer cell level. The live birth rate in group 1 was 89.0% (137/154), which was significantly higher than the rate of 49.0% (48/98) in group 2 (P<.001). A decrease in the peripheral natural killer cell level (odds ratio, 1.36; 95% confidence interval, 1.22-1.55; P<.001) and the anti-Muellerian hormone level (odds ratio, 1.41; 95% confidence interval, 1.14-1.81; P=.003) were important predicting factors for a higher live birth rate. Female body mass index (odds ratio, 0.97; 95% confidence interval, 0.82-1.15; P=.763) and parity (odds ratio, 1.61; 95% confidence interval, 0.71-4.12; P=.287) also were predicting factors. Furthermore, the area under the receiver operating characteristic curve of the model to diagnose of live birth was 0.853 with a sensitivity of 81.6% and a specificity of 78.0% using the training data set. And the Hosmer-Lemeshow test showed that the model was a good fit (p=6.068). CONCLUSION: We report a comparative decrease in the peripheral natural killer cell levels in early gestation when compared with prepregnancy cell levels in more than 60% of women with unexplained recurrent pregnancy loss at 4 to 6 weeks of gestation. When compared with prepregnancy peripheral natural killer cell levels, a decrease in the peripheral natural killer cell level during early pregnancy might be a useful predictor of the live birth rate among women with unexplained recurrent pregnancy loss.

10.
Phenomics ; 3(4): 360-374, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37589027

RESUMO

Ageing is often accompanied with a decline in immune system function, resulting in immune ageing. Numerous studies have focussed on the changes in different lymphocyte subsets in diseases and immunosenescence. The change in immune phenotype is a key indication of the diseased or healthy status. However, the changes in lymphocyte number and phenotype brought about by ageing have not been comprehensively analysed. Here, we analysed T and natural killer (NK) cell subsets, the phenotype and cell differentiation states in 43,096 healthy individuals, aged 20-88 years, without known diseases. Thirty-six immune parameters were analysed and the reference ranges of these subsets were established in different age groups divided into 5-year intervals. The data were subjected to random forest machine learning for immune-ageing modelling and confirmed using the neural network analysis. Our initial analysis and machine modelling prediction showed that naïve T cells decreased with ageing, whereas central memory T cells (Tcm) and effector memory T cells (Tem) increased cluster of differentiation (CD) 28-associated T cells. This is the largest study to investigate the correlation between age and immune cell function in a Chinese population, and provides insightful differences, suggesting that healthy adults might be considerably influenced by age and sex. The age of a person's immune system might be different from their chronological age. Our immune-ageing modelling study is one of the largest studies to provide insights into 'immune-age' rather than 'biological-age'. Through machine learning, we identified immune factors influencing the most through ageing and built a model for immune-ageing prediction. Our research not only reveals the impact of age on immune parameter differences within the Chinese population, but also provides new insights for monitoring and preventing some diseases in clinical practice. Supplementary Information: The online version contains supplementary material available at 10.1007/s43657-023-00106-0.

11.
Nat Commun ; 14(1): 3918, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400468

RESUMO

Organic small-molecule contrast agents have attracted considerable attention in the field of multispectral optoacoustic imaging, but their weak optoacoustic performance resulted from relatively low extinction coefficient and poor water solubility restrains their widespread applications. Herein, we address these limitations by constructing supramolecular assemblies based on cucurbit[8]uril (CB[8]). Two dixanthene-based chromophores (DXP and DXBTZ) are synthesized as the model guest compounds, and then included in CB[8] to prepare host-guest complexes. The obtained DXP-CB[8] and DXBTZ-CB[8] display red-shifted and increased absorption as well as decreased fluorescence, thereby leading to a substantial enhancement in optoacoustic performance. Biological application potential of DXBTZ-CB[8] is investigated after co-assembly with chondroitin sulfate A (CSA). Benefiting from the excellent optoacoustic property of DXBTZ-CB[8] and the CD44-targeting feature of CSA, the formulated DXBTZ-CB[8]/CSA can effectively detect and diagnose subcutaneous tumors, orthotopic bladder tumors, lymphatic metastasis of tumors and ischemia/reperfusion-induced acute kidney injury in mouse models with multispectral optoacoustic imaging.


Assuntos
Hidrocarbonetos Aromáticos com Pontes , Compostos Macrocíclicos , Camundongos , Animais , Água , Diagnóstico por Imagem
12.
Clin Chim Acta ; 545: 117368, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127232

RESUMO

BACKGROUND: Iron deficiency anemia (IDA) and thalassemia trait (TT) are the most common causes of microcytic hypochromic anemia (MHA) and are endemic in lower resource settings and rural areas with poor medical infrastructure. Accurate discrimination between IDA and TT is an essential issue for MHA patients. Although various discriminant formulas have been reported, distinguishing between IDA and TT is still a challenging problem due to the diversity of anemic populations. METHODS: We retrospectively collected laboratory data from 798 MHA patients. High proportions of α-TT (43.33 %) and TT concomitant with IDA (TT&IDA) patients (14.04 %) were found among TT patients. Five machine learning (ML) approaches, including Liner SVC (L-SVC), support vector machine learning (SVM), Extreme gradient boosting (XGB), Logistic Regression (LR), and Random Forest (RF), were applied to develop a discriminant model. Performance was assessed and compared with six existing discriminant formulas. RESULTS: The RF model was chosen as the discriminant algorithm, namely TT@MHA. TT@MHA was tested in an interlaboratory cohort with a sensitivity, specificity, accuracy, and AUC of 91.91 %, 91.00 %, 91.53 %, and 0.942, respectively. A webpage tool of TT@MHA (https://dxonline.deepwise.com/prediction/index.html?baseUrl=%2Fapi%2F&id=26408&topicName=undefined&from=share&platformType=wisdom) was developed to facilitate the healthcare providers in rural areas. CONCLUSION: The ML-based TT@MHA algorithm, with high sensitivity and specificity, could help discriminate TT patients from MHA patients, especially in populations with high proportions of α-TT patients and TT&IDA patients. Moreover, a user-friendly webpage tool for TT@MHA could facilitate healthcare providers in rural areas where advanced technologies are not accessible.


Assuntos
Anemia Hipocrômica , Anemia Ferropriva , Talassemia beta , Humanos , Estudos Retrospectivos , Diagnóstico Diferencial , Anemia Hipocrômica/diagnóstico , Anemia Hipocrômica/etiologia , Talassemia beta/diagnóstico , Anemia Ferropriva/diagnóstico , Aprendizado de Máquina , Índices de Eritrócitos
13.
Med Teach ; 45(6): 596-603, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36971649

RESUMO

BACKGROUND: The study aimed to evaluate the effectiveness of learning blood cell morphology by learning on our Artificial intelligence (AI)-based online platform. METHODS: Our study is based on mixed-methods sequential explanatory design and crossover design. Thirty-one third-year medical students were randomly divided into two groups. The two groups had platform learning and microscopy learning in diferent sequences with pretests and posttests, respectively. Students were interviewed, and the records were coded and analyzed by NVivo 12.0. RESULTS: For both groups, test scores increased significantly after online-platform learning. Feasibility was the most mentioned advantage of the platform. The AI system could inspire the students to compare the similarities and differences between cells and help them understand the cells better. Students had positive perspectives on the online-learning platform. CONCLUSION: The AI-based online platform could assist medical students in blood cell morphology learning. The AI system could function as a more knowledgeable other (MKO) and guide the students through their zone of proximal development (ZPD) to achieve mastery. It could be an effective and beneficial complement to microscopy learning. Students had very positive perspectives on the AI-based online learning platform. It should be integrated into the course and curriculum to facilitate the students.[Box: see text].


Assuntos
Inteligência Artificial , Estudantes de Medicina , Humanos , Microscopia , Aprendizagem , Células Sanguíneas
14.
Adv Healthc Mater ; 11(22): e2201544, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36098246

RESUMO

Ulcerative colitis (UC) is a prevalent idiopathic inflammatory disease which causes such complications as intestinal perforation, obstruction, and bleeding, and thus deleteriously impacting people's normal work and quality of life. Hence, accurate diagnosis of UC is crucial in terms of planning optimal treatment plan. Herein, a pH/reactive oxygen species (ROS) dual-responsive nanosystem (BM@EP) is developed for UC's detection and therapy. BM@EP is composed of a chromophore-drug dyad and the enteric coating. The chromophore-drug dyad (BOD-XT-DHM) is synthesized by linking the chromophore (BOD-XT-BOH) and a flavonoid drug (dihydromyricetin DHM) through boronate ester bond. The enteric coating includes Eudragit S100 and poly(lactic-co-glycolic acid) (PLGA), the former is commonly employed as a pH-dependent polymer coating excipient so as to attain colon-targeted delivery, and the latter has been widely used as an excipient for the controlled-extended release. After oral administration, BM@EP delivers the dyad (BOD-XT-DHM) into the colon and releases the dyad molecules by being triggered by the alkaline pH in t colon, thereafter upon being stimulated by overexpressed H2 O2 in the inflamed colon, the boronate bond in the dyad is broken down and correspondingly the drug DHM is released for UC therapy, simultaneously the chromophore is released for near-infrared second window (NIR-II) fluorescence and optoacoustic imaging for UC diagnosis and recovery evaluation.


Assuntos
Colite Ulcerativa , Nanopartículas , Humanos , Sistemas de Liberação de Medicamentos , Colite Ulcerativa/diagnóstico por imagem , Colite Ulcerativa/tratamento farmacológico , Excipientes , Qualidade de Vida , Imagem Óptica , Preparações Farmacêuticas , Biomarcadores , Nanopartículas/química
15.
Anal Chim Acta ; 1208: 339831, 2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35525589

RESUMO

Food additives are essential to guarantee processed foods' safety throughout its journey from workshops or factories to shops or catering establishment and eventually to consumers. As one of the commonly-used food additives, nitrites upon reaction with amines would generate highly toxic nitrosamines (e.g., N,N-diethylnitrosamine, DEN) as inadvertent byproducts resulted from food processing or preparation which are known to cause hepatotoxicity and even cancer. Hence detecting nitrosamine-induced acute liver injury accurately would be conducive to planning optimal treatment and avoid any further deterioration. Herein we design an activatable probe (BHC-Lut) that can release the drug luteolin for therapy and the chromophore (BHC-OH) for NIR-II fluorescence/optoacoustic imaging upon being triggered by hepatic biomarker hydrogen peroxide. In the probe BHC-Lut, benzoindolium heptamethine cyanine with NIR-II fluorescent emission is adopted as the chromophore scaffold, the incorporation of triethylene glycol into benzoindolium ensures sufficient water solubility and enhances biocompatibility of the probe, and luteolin is coupled onto the chromophore via boronate linkage that acts as both H2O2-responsive unit and the fluorescence quencher. The probe itself is weakly emissive. In the presence of H2O2, the boronate bond is cleaved, and the chromophore BHC-OH and the drug luteolin are released, which produces evident NIR-II fluorescent/optoacoustic signals for imaging and wields therapeutic effect respectively. The probe BHC-Lut has been used in DEN-induced hepatic injury model in mice, and the results evince BHC-Lut's capability for in-situ biomarker-activatable detection and imaging of the acute liver injury site as well as in-situ biomarker-triggered drug release for therapy.


Assuntos
Técnicas Fotoacústicas , Animais , Biomarcadores , Liberação Controlada de Fármacos , Corantes Fluorescentes/química , Aditivos Alimentares , Peróxido de Hidrogênio , Fígado/diagnóstico por imagem , Luteolina , Camundongos , Imagem Óptica , Técnicas Fotoacústicas/métodos
16.
Diagnostics (Basel) ; 12(4)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35453875

RESUMO

We developed an artificial intelligence (AI) model that evaluates the feasibility of AI-assisted multiparameter flow cytometry (MFC) diagnosis of acute leukemia. Two hundred acute leukemia patients and 94 patients with cytopenia(s) or hematocytosis were selected to study the AI application in MFC diagnosis of acute leukemia. The kappa test analyzed the consistency of the diagnostic results and the immunophenotype of acute leukemia. Bland-Altman and Pearson analyses evaluated the consistency and correlation of the abnormal cell proportion between the AI and manual methods. The AI analysis time for each case (83.72 ± 23.90 s, mean ± SD) was significantly shorter than the average time for manual analysis (15.64 ± 7.16 min, mean ± SD). The total consistency of diagnostic results was 0.976 (kappa (κ) = 0.963). The Bland-Altman evaluation of the abnormal cell proportion between the AI analysis and manual analysis showed that the bias ± SD was 0.752 ± 6.646, and the 95% limit of agreement was from -12.775 to 13.779 (p = 0.1225). The total consistency of the AI immunophenotypic diagnosis and the manual results was 0.889 (kappa, 0.775). The consistency and speedup of the AI-assisted workflow indicate its promising clinical application.

17.
Biomaterials ; 283: 121468, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35286854

RESUMO

Ulcerative colitis is the most prevalent forms of inflammatory bowel diseases and a refractory autoimmune disease and affects millions of people worldwide. Herein, we develop an oral-administration nanosystem (QM@EP) for colitis detection, targeted drug delivery/release to colon and therapy. QM@EP consists of a molecular probe QY-SN-H2O2, a NLRP3 inhibitor MCC950 and enteric polymers. QY-SN-H2O2 is based on the AIE-active chromophore QY-SN-OH with pentafluorobenzenesulfonate moieties as the recognition moiety for the biomarker H2O2 and the fluorescence quencher. H2O2 can cleave the pentafluorobenzenesulfonate moieties in QY-SN-H2O2 and thus generating the AIE-active chromophore Q-SN-OH. Two biocompatible polymers were employed in the nanosystem, in which poly(lactic-co-glycolic acid) (PLGA) serves as the sustained release excipient and the Eudragit® S100 acts as the excipient for controlled release of drug formulations in colonic pH to prevent premature drug release in stomach. Our experiments demonstrate that, upon oral administration the nanosystem effectively delivers the probe and drug into colon and release them therein upon being triggered by colonic pH. Then the released probe is activated and turned into the AIE-active chromophore upon being triggered by the pathological level of colonic ROS, thereby bringing about strong fluorescence and optoacoustic signals for NIR-II fluorescence and 3D multispectral optoacoustic tomography (MSOT) imaging for diagnosis and therapeutic outcome monitoring; and the released drug exerts high therapeutic efficacy against ulcerative colitis through inhibiting NLRP3 inflammasome formation.


Assuntos
Colite Ulcerativa , Colite , Administração Oral , Colite/tratamento farmacológico , Colite Ulcerativa/diagnóstico por imagem , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Humanos , Peróxido de Hidrogênio/uso terapêutico , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR
18.
Analyst ; 147(3): 410-416, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35018902

RESUMO

Developing high-quality dyes to construct activatable probes for analyte sensing via NIR-II fluorescence is critical for attaining enhanced imaging depths and resolution. Heptamethine cyanines can serve this purpose; however, they usually have poor stability and a tendency to self-aggregate. Herein, we present a design strategy involving the installation of pyridinium and tert-butyl groups onto the central cyclohexenyl core to increase steric crowding, enhance water solubility, and provide a site for the incorporation of analyte-responsive elements. The resulting NP-N dyes emit NIR-II light and can outperform benchmark heptamethine cyanines such as ICG. Using HP-N1, we developed HP-H2O2 and showed that NIR-II fluorescence signals could be enhanced when treating with H2O2. HP-H2O2 was subsequently evaluated in murine models of acute lung injury and acute kidney injury. This strategy unlocks the potential of heptamethine cyanines and is applicable to examples with extended conjugation.


Assuntos
Injúria Renal Aguda , Lesão Pulmonar Aguda , Injúria Renal Aguda/diagnóstico , Lesão Pulmonar Aguda/diagnóstico , Animais , Biomarcadores , Corantes Fluorescentes , Peróxido de Hidrogênio , Rim , Pulmão , Camundongos , Imagem Óptica
19.
Bioact Mater ; 10: 79-92, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34901531

RESUMO

Immune-mediated inflammatory diseases (IMIDs) represent a diverse group of diseases and challenges remain for the current medications. Herein, we present an activatable and targeted nanosystem for detecting and imaging IMIDs foci and treating them through blocking NF-κB/NLRP3 pathways. A ROS-activatable prodrug BH-EGCG is synthesized by coupling a near-infrared chromophore with the NF-κB/NLRP3 inhibitor epigallocatechin-3-gallate (EGCG) through boronate bond which serves as both the fluorescence quencher and ROS-responsive moiety. BH-EGCG molecules readily form stable nanoparticles in aqueous medium, which are then coated with macrophage membrane to ensure the actively-targeting capability toward inflammation sites. Additionally, an antioxidant precursor N-acetylcysteine is co-encapsulated into the coated nanoparticles to afford the nanosystem BH-EGCG&NAC@MM to further improve the anti-inflammatory efficacy. Benefiting from the inflammation-homing effect of the macrophage membrane, the nanosystem delivers payloads (diagnostic probe and therapeutic drugs) to inflammatory lesions more efficiently and releases a chromophore and two drugs upon being triggered by the overexpressed in-situ ROS, thus exhibiting better theranostic performance in the autoimmune hepatitis and hind paw edema mouse models, including more salient imaging signals and better therapeutic efficacy via inhibiting NF-κB pathway and suppressing NLRP3 inflammasome activation. This work may provide perceptions for designing other actively-targeting theranostic nanosystems for various inflammatory diseases.

20.
Small ; 17(42): e2102598, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34523220

RESUMO

Inflammatory diseases are sometimes devastating and notoriously difficult to treat. Precisely modulating inflammatory signaling pathways is a promising approach for treating inflammatory diseases. Herein, a multifunctional nanosystem is developed for active targeting, activatable imaging and on-demand therapy against inflammatory diseases through modulating inflammatory pathways. A chromophore-drug dyad (QBS-FIS) is synthesized by linking a chromophore and a Nrf2 (nuclear factor E2-related factor) activator fisetin through boronate bond which serves as fluorescence quencher and ROS (reactive oxygen species)-responsive linker. QBS-FIS molecules form nanoparticles in water and are coated with macrophage cell membrane to ensure active targeting toward inflammation site. To further improve therapeutic efficacy, a NF-kB (nuclear-factor kappa-light-chain-enhancer of activated B cells) inhibitor thalidomide is co-encapsulated to afford the nanosystem (QBS-FIS&Thd@MM). Upon administration into mice, the nanosystem migrates to inflammatory site and pathological ROS therein cleaves the boronate bonds, thereby activating the chromophore for imaging liver/kidney inflammatory diseases for disease diagnosis and recovery evaluation via fluorescence and optoacoustic imaging as well as releasing the active drugs for treating acute liver inflammation through activating Nrf2 pathway and inhibiting NF-kB pathway. The 3D multispectral optoacoustic tomography imaging is applied to precisely locate the inflammatory foci in a spatiotemporal manner.


Assuntos
Fator 2 Relacionado a NF-E2 , NF-kappa B , Animais , Inflamação , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...