Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36432685

RESUMO

Fiber structures with connected pores resemble the natural extracellular matrix (ECM) in tissues, and show high potential for promoting the formation of natural functional tissue. The geometry of composite fibers produced by electrospinning is similar to that of the living-tissue ECM, in terms of structural complexity. The introduction of liquid crystals does not affect the morphology of fibers. The composite mat shows better hydrophilicity, with higher content of liquid crystal. At the same time, the higher the content of liquid crystal, the lower the modulus and tensile strength, and the higher the breaking energy and the elongation at break. Additionally, the factors affecting fibers are also investigated in this study. The addition of liquid crystals to the fibers' matrix can slow down the release of pDNA, which is the most common vehicle for genetic engineering, and the encapsulation of pDNA polymer into the fiber matrix can maintain biological activity. The continued release of the pDNA complex was achieved in this study through liquid crystals, and the effective release is controllable. In addition, the integration of liquid crystals into fibers with pDNA polymers can cause a faster transfection rate and promote HUVEC (Human Umbilical Vein Endothelial Cells) growth. It is possible to combine electrospun fibers containing LC (liquid crystal) with pDNA condensation technology to achieve the goal of a sustained release. The production of inductable tissue-building equipment can manipulate the required signals at an effective level in the local tissue microenvironment.

2.
ACS Biomater Sci Eng ; 6(4): 2312-2322, 2020 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33455305

RESUMO

Liquid crystal (LC), a characteristic substance of biofilms, has been reported to positively affect cell affinity. To better combine and utilize the properties of an LC and the advantages of polyurethane (PU) elastomers, the three-dimensional printing (3DP) molding technology and the simple soaking-swelling blending technology were used to construct PU/LC 3D composite scaffolds, and the compressive strength, porosity, hydrophilicity, and in vitro cell experiments of the scaffolds were initially discussed. The results indicated that the newly developed PU/LC 3D composite scaffolds exhibited an LC state; the addition of an LC did not change the porosity after swelling while maintaining a high porosity; the compressive strength of the composite scaffolds decreased while still maintaining high mechanical properties and enhancing hydrophilicity. At the same time, it could improve the cell affinity on the surface of the material, which was beneficial to increase the cell adhesion rate and cell activity, promote the osteogenic differentiation of human mesenchymal stem cells grown on the materials, and improve the alkaline phosphatase activity, calcium nodules, and the expression of related osteogenic genes and proteins. These results demonstrated potential applications of PU/LC composite scaffolds in repairing or regeneration of bone tissue engineering.


Assuntos
Cristais Líquidos , Poliuretanos , Humanos , Osteogênese , Engenharia Tecidual , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA