Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36830406

RESUMO

Virtual fencing technology uses on-animal devices to communicate boundaries via a warning audio tone and electrical pulse signals. There is currently limited validation work on sheep. This study used modified cattle eShepherd® virtual fencing neckbands on reduced-wool sheep with clipped necks to enable automated trials with small groups across both day and night. The first 5-day trial with six Dorper crossbred sheep was conducted in an experimental paddock setting, with a second 5-day trial conducted with 10 Ultra White sheep on a commercial farm. The animals across both trials were contained in the inclusion zone for 99.8% and 92.2% of the trial period, with a mean percentage (±SD) of total audio cues as audio only (i.e., not followed by an electrical pulse) being 74.9% ± 4.6 in the first trial, and 83.3% ± 20.6 for the second trial. In the second trial, sheep crossed over into the exclusion zone on the third night and remained there until they were walked out for their daily yard check in the morning. These preliminary trial results are promising for the use of automated technology on sheep, but suitable devices and algorithms still need to be designed specifically for sheep in the long term.

2.
PeerJ ; 8: e10066, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33062448

RESUMO

Early virtual fencing trials have effectively contained small groups of sheep within set areas of a paddock when all animals were wearing manual electronic collars. With sheep farming commonly involving large flocks, a potential cost-effective application of virtual fencing would involve applying equipment to only a proportion of the flock. In this study, we tested the ability of virtual fencing to control a small flock of sheep with differing proportions of the group exposed to the virtual fence (VF). Thirty-six Merino sheep were identified as leaders, middle or followers by moving them through a laneway. The sheep were then allocated to groups balanced for order of movement. The groups (n = 9 per group) included applying the VF to the following proportions of animals within each group: (1) 100% (n = 9 VF) (2) 66% (n = 6 VF; n = 3 no VF) (3) 33% (n = 3 VF; n = 6 no VF) (4) 0% (no VF; free to roam the paddock). The groups were given access to their own paddock (80 × 20 m) for two consecutive days, six hours per day, with the VF groups prevented from entering an exclusion zone that covered 50% of the north side of the paddock. During these hours, VF interactions, behavioural time budgets, and body temperature were recorded as measures of stress, and location was tracked with GPS. Group 100% VF and Control were tested on the first two days and groups 33% VF and 66% VF were tested on the following two days. During VF implementation the 100% VF and 66% VF group were successfully prevented from entering the exclusion zone. Having only 33% of the flock exposed to the virtual fence was not successful, with the sheep pushing forward through the VF to join flock mates in the exclusion zone. For learning to respond to the audio cue, sheep in the 33% group received more electrical stimuli with a 0.51 proportion for the ratio of electrical stimuli to audio cue, compared to 0.22 and 0.28 for the 100% and 66% groups, respectively. There were small differences in behavioural patterns of standing and lying on both days of testing, with the 100% VF and 66% VF groups spending more time lying. Although stress-induced hyperthermia did not occur in any of the VF groups, body temperature differed in the 33% VF group. There were no differences in temperature measures between the control and 100% VF animals. This study demonstrates that for a short period, controlling two-thirds of the flock was equally as effective as virtually fencing all animals, while controlling one-third of a flock with a virtual fence was not effective. For the short term, it appears that implementing the VF to a proportion of the flock can be an effective method of containment. Due to the limitations of this study, these results warrant further testing with larger flocks and for longer periods.

3.
Animals (Basel) ; 10(6)2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32575756

RESUMO

The eShepherd® virtual fencing system being commercialized for cattle has the potential to exclude cattle from environmentally sensitive areas. Animals are given audio cues to indicate a fence line via a neckband device. An electrical pulse is administered if the animal continues moving forward following an audio cue. A commercial trial was conducted in South Australia to assess whether virtual fencing technology could exclude 20 cattle from an area of regenerating saplings; across 44 days; using a contoured fence line. The results showed that the cattle were able to rapidly learn the virtual fencing cues; responding appropriately to the audio cue for 74.5% of 4378 audio signals; and were excluded from the regenerating area for 99.8% of the trial period with the more complex fence line (contoured; not straight) in place. IceQube R's® measuring lying time and bouts showed no consistent increasing or decreasing pattern of change. At the trial conclusion; the feed available in the protected zone was double the quantity and quality of the grazed zone. Technical issues occurred with some of the pre-commercial prototype devices; but those versions are now obsolete. This study observed a single group of cattle in one paddock; further testing of the virtual technology is warranted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA