Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 80(8): 3945-3956, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38520325

RESUMO

BACKGROUND: Soybean is the third-greatest global commodity crop with respect to grain production, Brazil is the largest soybean producer in the world. We performed the first extensive survey including all the five main soybean cultivation regions in Brazil over three seasons (2018/2019, 2019/2020, and 2020/2021). A total of 2386 localities were sampled, corresponding to 145 municipalities in 11 states. Sampling was carried out between the R1 and R8 soybean growth stages, using a beating sheet. RESULTS: Fifteen species were recorded, with five species accounting for more than 99% of the sampled insects. The Neotropical brown stink bug, Euschistus heros (F.), was the most abundant species (82.4% of the adults and 84.1% of the nymphs overall), with differences in the mean abundance between soybean macroregions. The melacanthus green belly stink bug, Diceraeus melacanthus Dallas was the second most abundant species overall, followed by the brown winged stink bug, Edessa meditabunda (F.), the furcatus green belly stink bug, Diceraeus furcatus (F.) and the red-banded green stink bug, Piezodorus guildinii (Westwood). The relative abundance of each species differed between soybean macroregions. The mean abundance of nymphs and adults of Euschistus heros at different soybean reproductive stages showed an increase from early reproductive stages to the beginning of the late reproductive stages (R5 or R6). CONCLUSION: This large-scale assessment of stink bugs provides a basis for outlining integrated pest management programs and drives the development of monitoring and control strategies, as well as future studies investigating population dynamics over time and space in soybean fields. © 2024 Society of Chemical Industry.


Assuntos
Glycine max , Heterópteros , Ninfa , Animais , Glycine max/crescimento & desenvolvimento , Brasil , Heterópteros/crescimento & desenvolvimento , Heterópteros/fisiologia , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Densidade Demográfica , Produtos Agrícolas/crescimento & desenvolvimento
2.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38457335

RESUMO

The soybean bud borer, a soybean pest in Brazil, was initially identified as Crocidosema aporema (Walsingham 1914) (Lepidoptera: Tortricidae). Outbreaks of this species have recently increased, but identification of this pest remains uncertain, and the historical factors associated with its geographic distribution in Brazil are little known. Here, we conducted a species characterization and phylogeographic analysis based on molecular and morphological evidence. Ninety individuals of bud-borers Lepidoptera were collected in different regions of Brazil. We sequenced COI and COII mitochondrial genes and examined wing patterns and male genital morphology. DNA barcoding approach revealed that 10 individuals were Argyrotaenia sphaleropa (Meyrick 1909) (Lepidoptera: Tortricidae) and 80 were a species of the genus Crocidosema Zeller. The morphology of the adult genitalia and wings proved to be insufficient to confirm the identification of Brazilian individuals as C. aporema, a species originally described from a high-elevation site in Costa Rica. Furthermore, the genetic distance between putative C. aporema specimens from Brazil and Costa Rica (ranging from 5.2% to 6.4%) supports the hypothesis that the Brazilian specimens are not referable to C. aporema. Our analysis revealed a single genetic strain (i.e., species) with low genetic diversity on soybean crops. We found no indication that the genetic structure was related to geographic distance among populations or edaphoclimatic regions. The population expansion of the soybean bud borer coincides with the increase in the area of soybean production in Brazil, suggesting that expanded soybean farming has allowed a significant increase in the effective population size of this pest.


Assuntos
Lepidópteros , Mariposas , Masculino , Animais , Lepidópteros/genética , Brasil , Glycine max/genética , Mariposas/genética , Filogeografia , Demografia
3.
Pest Manag Sci ; 79(2): 548-559, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36205335

RESUMO

BACKGROUND: MON 87701 × MON 89788 × MON 87751 × MON 87708 soybean, that expresses Cry1A.105, Cry2Ab2, and Cry1Ac insecticidal proteins and confers tolerance to glyphosate and dicamba, is a potential tool for managing Spodoptera species in soybean fields in Brazil. In this study, we characterized the lethal and sub-lethal effects of Cry1A.105/Cry2Ab2/Cry1Ac soybean against Spodoptera species and genotypes of Spodoptera frugiperda resistant and susceptible to Cry1 and Cry2 proteins. These evaluations were also conducted with MON 87701 × MON 89788 soybean, which expresses Cry1Ac protein. RESULTS: Cry1A.105/Cry2Ab2/Cry1Ac soybean caused high lethality in neonates of Spodoptera cosmioides and Spodoptera albula. However, it showed low lethality in S. frugiperda genotypes homozygous for resistance to Cry1 and Cry2 proteins but reduced their population growth potential. No relevant lethal effects of Cry1Ac soybean were detected in the Spodoptera species and genotypes evaluated. Spodoptera frugiperda genotypes heterozygous for Cry1 and Cry2 resistance were controlled by Cry1A.105/Cry2Ab2/Cry1Ac soybean, with no insects developing into adults. This Bt soybean also caused intermediate mortality of neonates of Spodoptera eridania (60%-83%) but no surviving larvae developed to adulthood, resulting in population suppression. CONCLUSIONS: Cry1A.105/Cry2Ab2/Cry1Ac soybean caused high mortality of S. cosmioides, S. albula, and S. frugiperda genotypes susceptible to Cry1 and Cry2 and heterozygous for Cry1 and Cry2 resistance. This Bt soybean also suppressed population growth of S. eridania but had minimal impact on S. frugiperda homozygous for resistance to Cry1 and Cry2 proteins. Cry1Ac soybean had minimal impact on all Spodoptera species and genotypes evaluated. © 2022 Society of Chemical Industry.


Assuntos
Inseticidas , Mariposas , Animais , Humanos , Recém-Nascido , Spodoptera , Inseticidas/farmacologia , Glycine max/genética , Glycine max/metabolismo , Brasil , Endotoxinas/genética , Endotoxinas/farmacologia , Endotoxinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/metabolismo , Larva , Plantas Geneticamente Modificadas , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/metabolismo
4.
J Environ Sci Health B ; 57(11): 865-875, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36205187

RESUMO

Dicamba is a post-emergence herbicide commonly used to control broadleaves in cereal crops. However, a portion of the herbicide might reach soil surface, and many factors could affect its dynamics and effects. The objective of this research was to evaluate the dynamics of dicamba applied to the soil, to the soil and covered with straw and over the straw, in addition, to evaluate the weed control in pre-emergence. Two field experiments at different locations were conducted with dicamba. To quantify dicamba in the soil a LC-MS/MS system was used. In both experiments, rainfall and straw played a key role in dicamba soil dynamics and weed control. Dicamba in the soil was affected by presence of straw and accumulated rainfall after the application. Higher concentrations (254-432 ng g soil-1) in the soil 0-10 cm layers and greater leaching potential were found for the application in the soil compared to over the straw. The maximum concentration of dicamba (101.6-226 ng g soil-1) was found after 10 mm of rainfall for dicamba application over the straw. Around 60-70% of weeds were controlled with concentrations greater than 20 ng/g soil-1, in the presence or absence of straw.


Assuntos
Herbicidas , Herbicidas/análise , Dicamba/farmacologia , Zea mays , Controle de Plantas Daninhas , Solo , Brasil , Cromatografia Líquida , Espectrometria de Massas em Tandem
5.
Pest Manag Sci ; 78(8): 3456-3466, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35567382

RESUMO

BACKGROUND: The sugarcane borer (SCB), Diatraea saccharalis (Lepidoptera: Crambidae), is a key pest of maize in Argentina, and genetically modified maize, producing Bacillus thuringiensis (Bt) proteins, has revolutionized the management of this insect in South America. However, field-evolved resistance to some Bt technologies has been observed in SCB in Argentina. Here we assessed a new Bt technology, MON 95379, in the laboratory, greenhouse and field for efficacy against SCB. RESULTS: In a laboratory leaf disc bioassay, both MON 95379 (producing Cry1B.868 and Cry1Da_7) and Cry1B.868_single maize (producing only Cry1B.868) resulted in 100% mortality of SCB. The level of Cry1B.868 in the Cry1B.868_single maize is comparable to that in MON 95379 maize. However, the Cry1Da_7 protein does not have high efficacy against SCB, as evidenced by < 20% mortality on Cry1Da_7_single leaf tissue. Total (100%) mortality of SCB in a Cry1B.868_single tissue dilution bioassay indicated that Cry1B.868_single maize meets the criteria to be classified as a high dose. Similar median lethal concentration (LC50 ) values were observed for MON 89034-R and susceptible SCB strains exposed to Cry1B.868 protein. MON 95379 also controlled SCB strains resistant to MON 89034 (Cry1A.105/Cry2Ab2) and Cry1Ab. Under field conditions in Brazil and Argentina, MON 95379 maize plants were consistently protected from SCB damage. CONCLUSION: MON 95379 maize will bring value to maize growers in South America by effectively managing SCB even in locations where resistance to other Bt-containing maize technologies has been reported. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Bacillus thuringiensis , Mariposas , Saccharum , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Brasil , Grão Comestível , Endotoxinas/genética , Endotoxinas/metabolismo , Endotoxinas/farmacologia , Proteínas Hemolisinas/genética , Resistência a Inseticidas , Larva , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Zea mays/genética
6.
Ambio ; 51(4): 823-835, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34677811

RESUMO

Human settlement into rural areas (counterurbanization) is generating new patterns of reforestation, with distinctive features compared to the previously considered pathways of forest transition through "economic development" and "forest scarcity". Here, we discuss the specific features of this neglected pathway of forest recovery and describe the process with the support of study cases around the world. This pathway includes specific motivations (e.g., natural amenities, outdoor recreation), particular socio-economic processes, conflicts between newcomers and locals, and specific ecological outcomes (e.g., a larger proportion of non-native species in the new forests). Although this pathway locally affects small areas, as a widespread and expanding process around the world, counterurbanization could have a growing global effect, with the potential to modify biodiversity, ecosystem services, and cultural values. These novel characteristics should be further explored to better understand the patterns and processes of forest transitions in a context of a globally connected world.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Desenvolvimento Econômico , Florestas , Humanos , Árvores
7.
Pest Manag Sci ; 77(12): 5375-5381, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34302709

RESUMO

BACKGROUND: Digitaria insularis is a weed species that has gained considerable importance in Brazil's soybean production areas that rely on glyphosate-resistant cultivars. Herbicide-resistant weed populations of this species have been reported in many regions in Brazil, first in the south, followed by later reports in the north. We hypothesized that the spread of herbicide-resistant D. insularis is facilitated by movement of agricultural machinery from the southern regions of Brazil. RESULTS: Population genomics revealed a weak or no genetic structure (FST  = [0; 0.16]), moderate expected heterozygosity (HE  = 0.15; 0.44) and low inbreeding (FIS  = [-0.1; 0.1]) in D. insularis populations. Our data supported the hypothesis that herbicide resistance gene flow predominantly occurred in a south-to-north direction based on a migration analysis. We also found evidence of local adaptation of resistant populations in the northern soybean-growing regions of Brazil. CONCLUSION: Evidence in our work suggests that gene flow of glyphosate-resistant D. insularis is associated with movement of agricultural machinery, although local selection pressure seems to play an important role in the evolution of herbicide resistance throughout the country. Our results suggest preventive practices such as equipment sanitation should be implemented to limit the spread of herbicide resistant D. insularis. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Digitaria , Herbicidas , Brasil , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Metagenômica , Plantas Daninhas , Glycine max/genética
8.
An Acad Bras Cienc ; 93(1): e20190425, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33825789

RESUMO

Conyza species are important weeds in global agriculture, especially due to their capacity to evolve resistance to multiple herbicide mechanisms of action. We aimed to evaluate the frequency and distribution of resistance to glyphosate and chlorimuron-ethyl in Conyza spp. populations from Brazil. Seed samples were collected from grain production areas across nine Brazilian states over five consecutive years (2014 to 2018). Prior to resistance monitoring trials, dose-response assays were conducted to determine a single dose of glyphosate or chlorimuron-ethyl to discriminate resistant and susceptible populations. Resistance monitoring based on plant responses to the application of discriminatory doses of glyphosate (960 g ha-1) or chlorimuron-ethyl (20 g ha-1). Populations were classified as resistant, moderately resistant, or susceptible to either herbicide. While glyphosate resistance was highly frequent (71.2%) in all the five years, chlorimuron-ethyl resistant populations occurred at 39.8% of the total. The frequency of multiple resistance to both herbicides (35.3%) was proportional to the occurrence of chlorimuron-ethyl resistance (39.6%). Resistance to glyphosate and to chlorimuron-ethyl were found across all states evaluated.


Assuntos
Conyza , Herbicidas , Brasil , Glicina/análogos & derivados , Glicina/farmacologia , Resistência a Herbicidas , Herbicidas/farmacologia , Glifosato
9.
Pestic Biochem Physiol ; 164: 1-6, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32284114

RESUMO

Sourgrass (Digitaria insularis) is one of the most problematic weeds in South America because glyphosate resistance is widespread across most crop production regions. Acetyl coenzyme A carboxylase (ACCase)-inhibiting herbicides have been intensively used to manage D. insularis, which substantially increased selection pressure for this class of herbicides. We confirmed resistance to ACCase herbicides in a D. insularis population from Brazil and characterized its molecular basis. Resistant plants showed high level of resistance to haloxyfop (resistance factor, RF = 613-fold), low level of resistance to pinoxaden (RF = 3.6-fold), and no resistance to clethodim. A target-site mutation, Trp2027Cys, was found in the ACCase sequence from resistant plants. A protein homology model shows that the Trp2027Cys mutation is near the herbicide-binding pocket formed between two ACCase chains, and is predicted to obstruct the access of aryloxyphenoxypropionates (FOP) herbicides to the binding site. A qPCR-based single nucleotide polymorphism genotyping method was validated to discriminate susceptible (wild-type Trp2027) and resistant (mutant Cys2027) alleles. All resistant plants were homozygous for the mutation and the assay could be used for early detection of resistance in D. insularis field samples with suspected resistance to ACCase inhibitors.


Assuntos
Digitaria , Herbicidas , Acetil-CoA Carboxilase , Brasil , Resistência a Herbicidas , Mutação , Poaceae
10.
Pest Manag Sci ; 74(10): 2246-2259, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29222931

RESUMO

Herbicide-resistant weeds have been observed since the early years of synthetic herbicide development in the 1950s and 1960s. Since that time there has been a consistent increase in the number of cases of herbicide resistance and the impact of herbicide-resistant weeds. Although the nature of crop production varies widely around the world, herbicides have become a primary tool for weed control in most areas. Dependence on herbicides continues to increase as global populations migrate away from rural areas to cities and the agricultural labor force declines. This increased use of herbicides and the concurrent selection pressure have resulted in a rise in cases of multiple resistance, leaving some farmers with few or no herbicide options for certain weed infestations. Global population and economic forces drive many farmer choices regarding crop production and weed control. The challenge is how to insert best management practices into the decision-making process while addressing various economic and regulatory needs. This review endeavors to provide a current overview of herbicide resistance challenges in the major crop production areas of the world and discusses some research initiatives designed to address portions of the problem. © 2017 Society of Chemical Industry.


Assuntos
Produção Agrícola/métodos , Resistência a Herbicidas , Herbicidas/farmacologia , Plantas Daninhas/efeitos dos fármacos , Controle de Plantas Daninhas , Resistência a Herbicidas/genética , Plantas Daninhas/genética
11.
Behav Processes ; 113: 163-71, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25680329

RESUMO

We conducted focal observations of vicuña, a year-around territorial mammal, to compare vigilance behaviour between territorial and bachelor males outside the reproductive season. We hypothesized that the time spent vigilant would depend on male social status, considering the potential effects of several variables: sampling year, group size, distances to the nearest neighbour and to a vega (mountain wetland). We fit GLM models to assess how these variables, and their interactions, affected time allocation of territorial and bachelor males. We found non significant differences between territorial and bachelor males in the time devoted to vigilance behaviour. Vigilance of territorial males was influenced by the sampling year and the distance to the vega. In turn, vigilance in bachelor males was influenced mainly by the sampling year, the group size and the distance to the vega. Our results suggest that sampling year and distance to the vega are more important than social factors in conditioning the behaviour of male vicuñas, during the non-reproductive season. Future studies of behaviour in water-dependant ungulates, should consider the influence of water and forage availabilities, and the interactions between group size and other variables.


Assuntos
Nível de Alerta/fisiologia , Comportamento Animal/fisiologia , Camelídeos Americanos/fisiologia , Meio Social , Água , Animais , Comportamento de Ingestão de Líquido , Comportamento Alimentar , Modelos Lineares , Masculino , Estações do Ano , Comportamento Sexual Animal , Comportamento Social , Territorialidade
12.
PLoS One ; 9(1): e85960, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465812

RESUMO

Monitoring species abundance and distribution is a prerequisite when assessing species status and population viability, a difficult task to achieve for large herbivores at ecologically meaningful scales. Co-occurrence patterns can be used to infer mechanisms of community organization (such as biotic interactions), although it has been traditionally applied to binary presence/absence data. Here, we combine density surface and null models of abundance data as a novel approach to analyze the spatial and seasonal dynamics of abundance and distribution of guanacos (Lama guanicoe) and domestic herbivores in northern Patagonia, in order to visually and analytically compare the dispersion and co-occurrence pattern of ungulates. We found a marked seasonal pattern in abundance and spatial distribution of L. guanicoe. The guanaco population reached its maximum annual size and spatial dispersion in spring-summer, decreasing up to 6.5 times in size and occupying few sites of the study area in fall-winter. These results are evidence of the seasonal migration process of guanaco populations, an increasingly rare event for terrestrial mammals worldwide. The maximum number of guanacos estimated for spring (25,951) is higher than the total population size (10,000) 20 years ago, probably due to both counting methodology and population growth. Livestock were mostly distributed near human settlements, as expected by the sedentary management practiced by local people. Herbivore distribution was non-random; i.e., guanaco and livestock abundances co-varied negatively in all seasons, more than expected by chance. Segregation degree of guanaco and small-livestock (goats and sheep) was comparatively stronger than that of guanaco and large-livestock, suggesting a competition mechanism between ecologically similar herbivores, although various environmental factors could also contribute to habitat segregation. The new and compelling combination of methods used here is highly useful for researchers who conduct counts of animals to simultaneously estimate population sizes, distributions, assess temporal trends and characterize multi-species spatial interactions.


Assuntos
Biodiversidade , Camelídeos Americanos/fisiologia , Gado/fisiologia , Estações do Ano , Algoritmos , Animais , Animais Domésticos , Argentina , Geografia , Cabras , Herbivoria , Modelos Teóricos , Densidade Demográfica , Dinâmica Populacional , Ovinos
13.
J Exp Zool A Ecol Genet Physiol ; 319(10): 539-47, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24115389

RESUMO

Habitat can constrain and shape successful ecological and physiological strategies, thus providing the context for the evolution of life-history traits. However, unpredictable challenges, such as storms, natural disasters, and human activities can also have great effects on stress. Glucocorticoids (GCs) are adrenal steroid hormones that play an important role in how vertebrates cope with these predictable and unpredictable environmental challenges. Although assessing GCs levels can have many applications in the study of wildlife and/or captive animals, with or without capturing individuals, it requires a species-specific complete validation (analytical and biological) before its use. In this work, our aim was to: (a) validate a radioimmunoassay (RIA) for measuring GCs levels in L. guanicoe serum; (b) assess cortisol and corticosterone levels (if present) in serum of wild L. guanicoe individuals; and (c) compare the response to acute stressors (handling, shearing, and release). Our results successfully: (a) validated RIA for asses GCs levels in wild ungulates; (b) confirmed the presence for cortisol and corticosterone and showed that both GCs are differently affected by environmental stimuli in L. guanicoe; and (c) showed that GCs exhibit different patterns in the field and in response to acute stressors, making these camelids an interesting endocrinological model when seeking the adaptive functions of a given variation and further emphasizing the complexity of GC physiology in wild mammals.


Assuntos
Adaptação Psicológica , Corticosterona/sangue , Glucocorticoides/sangue , Hidrocortisona/sangue , Hormônio Adrenocorticotrópico/sangue , Animais , Camelídeos Americanos/sangue , Humanos , Radioimunoensaio
14.
J Environ Sci Health B ; 40(1): 1-11, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15656156

RESUMO

Brazilian off-season maize production is characterized by low yield due to several factors, such as climate variability and inadequate management practices, specifically weed management. Thus, the goal of this study was to determinate the critical period of weed competition in off-season maize (Zea mays L.) crop using thermal units or growing degree days (GDD) approach to characterize crop growth and development. The study was carried out in experimental area of the University of São Paulo, Brazil, with weed control (C), as well as seven coexistence periods, 2, 4, 6, 8, and 12 leaves, flowering, and all crop cycle; fourteen treatments were done. Climate data were obtained from a weather station located close to the experimental area. To determine the critical period for weed control (CPWC) logistic models were fitted to yield data obtained in both W and C, as a function of GDD. For an arbitrary maximum yield loss fixed in 2.5%, the CPWC was found between 301 and 484 GDD (7-8 leaves). Also, when the arbitrary loss yield was fixed in 5 and 10%, the period before interference (PBI) was higher than the critical weed-free period (CWFP), suggesting that the weeds control can be done with only one application, between 144 and 410 GDD and 131 and 444 GDD (3-8 leaves), respectively. The GDD approach to characterize crop growth and development was successfully used to determine the critical period of weeds control in maize sown off-season. Further works will be necessary to better characterize the interaction and complexity of maize sown off-season with weeds. However, these results are encouraging because the possibility of the results to be extrapolated and because the potential of the method on providing important results to researchers, specifically crop modelers.


Assuntos
Agricultura , Clima , Modelos Teóricos , Zea mays/crescimento & desenvolvimento , Brasil , Controle de Pragas , Desenvolvimento Vegetal , Dinâmica Populacional , Estações do Ano
15.
J Environ Sci Health B ; 40(1): 21-8, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15656158

RESUMO

The objective of this research was to study population dynamics of the weed crabgrass, genus Digitaria, submitted to selection pressure by herbicides currently applied in sugarcane crops in Brazil. In the first experiment two crabgrass species (Digitaria nuda and Digitaria ciliaris) and eight herbicide treatments applied in preemergence were used, and control percentage was evaluated at 7, 14, and 21 days after herbicide application (DAA). In the second experiment the level of tolerance through dose-response curve was determined for the species D. nuda and D. ciliaris, to the herbicides imazapyr, tebuthiuron, ametryne, and metribuzin. All the herbicides studied were efficient in controlling D. ciliaris, however, for D. nuda the best results were obtained only with ametryne, metribuzin, and isoxaflutole. The relation (T/S) between the rate required to reduce plant dry biomass (GR50) at 21 DAA of D. nuda and D. ciliaris was 16 for imazapyr and 6.3 for tebuthiuron, showing differential susceptibility of species; however for ametryne the rate T/S of 1.1 showed that D. nuda was not tolerant to this herbicide. For metribuzin, at 1.92 kg a.i. ha(-1), reduction of dry biomass was 80 and 90% to D. nuda and D. ciliaris, respectively. Even being controlled by metribuzin, D. nuda presented a higher level of tolerance to this herbicide, what was confirmed by the relationship T/S 14.4. As general conclusion of the research, it can be stated that the species D. nuda is more tolerant to ALS inhibiting herbicides and substituted urea, when compared with D. ciliaris; probably, D. nuda was selected by repetitive use of these herbicides.


Assuntos
Digitaria/crescimento & desenvolvimento , Herbicidas/farmacologia , Seleção Genética , Biomassa , Controle de Pragas , Dinâmica Populacional , Saccharum
16.
J Environ Sci Health B ; 40(1): 59-67, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15656163

RESUMO

During the growing season of 2002--2003, field and greenhouse experiments were conducted with the objective of evaluating the influence of Italian ryegrass phenological stages and management alternatives on the control of resistant biotypes to glyphosate. Three field experiments were conducted in Lagoa Vermelha, RS, Brazil and glyphosate was applied alone and in combinations with alternative herbicides. Two greenhouse experiments were also conducted at the Department of Crop Science, ESALQ/USP, Piracicaba, SP, Brazil. The Italian ryegrass resistant population was collected from Lagoa Vermelha, RS, Brazil. From the results it was possible to conclude that: (i) the more advanced the phenological stage of application, the more difficult the control of resistant Italian ryegrass by glyphosate, mainly by the rate of 960 g a.i. ha(-1); however, this rate applied at earlier phenological stage (five tillers), the control was higher than 90%; (ii) with the increment of glyphosate rate, it significant response was observed on the control at all stages of application; (iii) the mixture of glyphosate + clethodim (1440 + 72 g a.i. ha(-1)), paraquat + diuron (500 + 250 g a.i. ha(-1)), at all stages of application and clethodim (96 g a.i. ha(-1)) and paraquat + diuron (300 + 150 g a.i. ha(-1)) at the initial stages until pre-flowering were excellent alternatives for management of these populations; and (iv) the response of control was much faster for the mixture of glyphosate + clethodim, independently of growth stage.


Assuntos
Glicina/análogos & derivados , Glicina/farmacologia , Herbicidas/farmacologia , Lolium/crescimento & desenvolvimento , Controle de Pragas , Adaptação Fisiológica , Resistência a Medicamentos , Flores , Reprodução , Fatores de Tempo , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...